Particle detector models from path integrals of localized quantum fields (2310.16083v4)
Abstract: Using the Schwinger-Keldysh path integral, we draw a connection between localized quantum field theories and more commonly used models of local probes in Relativistic Quantum Information (RQI). By integrating over and then tracing out the inaccessible modes of the localized field being used as a probe, we show that, at leading order in perturbation theory, the dynamics of any finite number of modes of the probe field is exactly that of a finite number of harmonic-oscillator Unruh-DeWitt (UDW) detectors. The equivalence is valid for a rather general class of input states of the probe-target field system, as well as for any arbitrary number of modes included as detectors. The path integral also provides a closed-form expression which gives us a systematic way of obtaining the corrections to the UDW model at higher orders in perturbation theory due to the existence of the additional modes that have been traced out. This approach vindicates and extends a recently proposed bridge between detector-based and field-theory-based measurement frameworks for quantum field theory [T. R. Perche et al., Particle detectors from localized quantum field theories, Phys. Rev. D 109, 045013 (2024)], and also points to potential connections between particle detector models in RQI and other areas of physics where path integral methods are more commonplace -- in particular, the Wilsonian approach to the renormalization group and effective field theories.
- J. Polo-Gómez, L. J. Garay, and E. Martín-Martínez, A detector-based measurement theory for quantum field theory, Phys. Rev. D 105, 065003 (2022).
- B. Reznik, Entanglement from the vacuum, Found. Phys. 33, 167 (2003).
- B. Reznik, A. Retzker, and J. Silman, Violating Bell’s inequalities in vacuum, Phys. Rev. A 71, 042104 (2005).
- A. Pozas-Kerstjens and E. Martín-Martínez, Harvesting correlations from the quantum vacuum, Phys. Rev. D 92, 064042 (2015).
- W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14, 870 (1976).
- P. Candelas and D. W. Sciama, Irreversible thermodynamics of black holes, Phys. Rev. Lett. 38, 1372 (1977).
- B. DeWitt, General Relativity; an Einstein Centenary Survey (Cambridge University Press, Cambridge, UK, 1980).
- R. D. Sorkin, Impossible measurements on quantum fields (1993), arXiv:gr-qc/9302018 [gr-qc] .
- F. Dowker, Useless qubits in “relativistic quantum information” (2011), arXiv:1111.2308 [quant-ph] .
- L. Borsten, I. Jubb, and G. Kells, Impossible measurements revisited, Phys. Rev. D 104, 025012 (2021).
- C. J. Fewster and R. Verch, Quantum fields and local measurements, Commun. Math. Phys. 378, 851 (2020).
- C. J. Fewster and R. Verch, Measurement in quantum field theory (2023), arXiv:2304.13356 [math-ph] .
- H. Bostelmann, C. J. Fewster, and M. H. Ruep, Impossible measurements require impossible apparatus, Phys. Rev. D 103, 025017 (2021).
- C. J. Fewster, I. Jubb, and M. H. Ruep, Asymptotic measurement schemes for every observable of a quantum field theory, Ann. Henri Poincaré 24, 1137 (2023).
- J. de Ramón, M. Papageorgiou, and E. Martín-Martínez, Relativistic causality in particle detector models: Faster-than-light signaling and impossible measurements, Phys. Rev. D 103, 085002 (2021).
- D. Grimmer, The pragmatic QFT measurement problem and the need for a Heisenberg-like cut in QFT, Synthese 202, 104 (2023).
- M. Papageorgiou and D. Fraser, Eliminating the “impossible”: Recent progress on local measurement theory for quantum field theory (2023), arXiv:2307.08524 [quant-ph] .
- J. Schwinger, Brownian Motion of a Quantum Oscillator, J. Math. Phys. 2, 407 (1961).
- L. V. Keldysh, Diagram Technique for Nonequilibrium Processes, Zh. Eksp. Teor. Fiz. 47, 1515 (1965).
- R. Feynman and F. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963).
- C. Anastopoulos, B.-L. Hu, and K. Savvidou, Towards a field-theory based relativistic quantum information, J. Phys. Conf. Ser. 2533, 012004 (2023a).
- C. Anastopoulos, B.-L. Hu, and K. Savvidou, Quantum field theory based quantum information: Measurements and correlations, Ann. Phys. 450, 169239 (2023b).
- J. Polchinski, Effective Field Theory and the Fermi Surface (1999), arXiv:hep-th/9210046 [hep-th] .
- C. P. Burgess, Introduction to Effective Field Theory: Thinking Effectively about Hierarchies of Scale (Cambridge University Press, 2020).
- J. Foo, S. Onoe, and M. Zych, Unruh-deWitt detectors in quantum superpositions of trajectories, Phys. Rev. D 102, 085013 (2020).
- N. Stritzelberger and A. Kempf, Coherent delocalization in the light-matter interaction, Phys. Rev. D 101, 036007 (2020).
- F. Giacomini and A. Kempf, Second-quantized Unruh-DeWitt detectors and their quantum reference frame transformations, Phys. Rev. D 105, 125001 (2022).
- E. P. G. Gale and M. Zych, Relativistic Unruh-DeWitt detectors with quantized center of mass, Phys. Rev. D 107, 056023 (2023).
- A. Pozas-Kerstjens and E. Martín-Martínez, Entanglement harvesting from the electromagnetic vacuum with hydrogenlike atoms, Phys. Rev. D 94, 064074 (2016).
- T. R. Perche, B. Ragula, and E. Martín-Martínez, Harvesting entanglement from the gravitational vacuum (2022), arXiv:2210.14921 [quant-ph] .
- E. Poisson, The motion of point particles in curved spacetime, Living Rev. Relativ. 7, 10.12942/lrr-2004-6 (2004).
- W. G. Unruh and R. M. Wald, What happens when an accelerating observer detects a Rindler particle, Phys. Rev. D 29, 1047 (1984).
- J. Louko and A. Satz, How often does the Unruh-DeWitt detector click? regularization by a spatial profile, Class. Quantum Gravity 23, 6321 (2006).
- J. Louko and A. Satz, Transition rate of the Unruh–DeWitt detector in curved spacetime, Class. Quantum Gravity 25, 055012 (2008).
- L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80, 787 (2008).
- E. Martín-Martínez, M. Montero, and M. del Rey, Wavepacket detection with the Unruh-DeWitt model, Phys. Rev. D 87, 064038 (2013).
- E. Tjoa and R. B. Mann, Harvesting correlations in Schwarzschild and collapsing shell spacetimes, J. High Energy Phys. 2020 (8), 155.
- I. M. Burbano, T. R. Perche, and B. de S. L. Torres, A path integral formulation for particle detectors: the Unruh-DeWitt model as a line defect, J. High Energy Phys. 2021 (3), 76.
- W. G. Unruh and W. H. Zurek, Reduction of a wave packet in quantum brownian motion, Phys. Rev. D 40, 1071 (1989).
- B. L. Hu and A. Matacz, Quantum brownian motion in a bath of parametric oscillators: A model for system-field interactions, Phys. Rev. D 49, 6612 (1994).
- S.-Y. Lin and B. L. Hu, Backreaction and the Unruh effect: New insights from exact solutions of uniformly accelerated detectors, Phys. Rev. D 76, 064008 (2007).
- D. E. Bruschi, A. R. Lee, and I. Fuentes, Time evolution techniques for detectors in relativistic quantum information, J. Phys. A: Math. Theor. 46, 165303 (2013).
- S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
- G. Adesso, S. Ragy, and A. R. Lee, Continuous variable quantum information: Gaussian states and beyond, Open Syst. Inf. Dyn. 21, 1440001 (2014).
- L. Hackl and E. Bianchi, Bosonic and fermionic Gaussian states from Kähler structures, SciPost Phys. Core 4, 025 (2021).
- S. Vriend, D. Grimmer, and E. Martín-Martínez, The Unruh effect in slow motion, Symmetry 13, 10.3390/sym13111977 (2021).
- E. Martín-Martínez and P. Rodriguez-Lopez, Relativistic quantum optics: The relativistic invariance of the light-matter interaction models, Phys. Rev. D 97, 105026 (2018).
- E. Martín-Martínez, T. R. Perche, and B. de S. L. Torres, General relativistic quantum optics: Finite-size particle detector models in curved spacetimes, Phys. Rev. D 101, 045017 (2020).
- E. Martín-Martínez, T. R. Perche, and B. d. S. L. Torres, Broken covariance of particle detector models in relativistic quantum information, Phys. Rev. D 103, 025007 (2021).
- S. J. Summers and R. Werner, The vacuum violates Bell’s inequalities, Phys. lett., A 110, 257 (1985).
- E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90, 045003 (2018).
- M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators (Academic Press, 1978).
- B. Simon, Schrödinger operators with purely discrete spectrum (2008), arXiv:0810.3275 [math.SP] .
- I. M. Burbano and F. Calderón, Self-normalizing path integrals (2021), arXiv:2109.00517 [hep-th] .
- Y. BenTov, Schwinger-Keldysh path integral for the quantum harmonic oscillator (2021), arXiv:2102.05029 [hep-th] .
- J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, 2007).
- E. A. Calzetta and B.-L. Hu, Nonequilibrium Quantum Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2008).
- H. F. Dowker and J. J. Halliwell, Quantum mechanics of history: The decoherence functional in quantum mechanics, Phys. Rev. D 46, 1580 (1992).
- E. Calzetta and B. L. Hu, Closed-time-path functional formalism in curved spacetime: Application to cosmological back-reaction problems, Phys. Rev. D 35, 495 (1987).
- P. Adshead, R. Easther, and E. A. Lim, “In-in” formalism and cosmological perturbations, Phys. Rev. D 80, 083521 (2009).
- M. H. Ruep, Weakly coupled local particle detectors cannot harvest entanglement, Class. Quantum Gravity 38, 195029 (2021).
- D. Grimmer, B. d. S. L. Torres, and E. Martín-Martínez, Measurements in QFT: Weakly coupled local particle detectors and entanglement harvesting, Phys. Rev. D 104, 085014 (2021).
- N. de Aguiar Alves, Nonperturbative aspects of quantum field theory in curved spacetime (2023), arXiv:2305.17453 [gr-qc] .
Collections
Sign up for free to add this paper to one or more collections.