Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Formulas of Fractional GJMS operators on hyperbolic spaces and sharp fractional Poincaré-Sobolev and Hardy-Sobolev-Maz'ya inequalities (2310.15973v3)

Published 24 Oct 2023 in math.AP and math.DG

Abstract: Using the scattering theory on the hyperbolic space $\mathbb{H}n$, we give the explicit formulas of the fractional GJMS operators $P_{\gamma}$ for all $\gamma\in(0,\frac{n}{2})\setminus\mathbb{N}$ on $\mathbb{H}n$.These $P_{\gamma}$ for $\gamma\in(0,\frac{n}{2})\setminus\mathbb{N}$ are neither conformal to the fractional Laplacians on $\mathbb{R}n_{+}$ nor on $\mathbb{B}n$ in $\mathbb{R}{n}$ though $P_{\gamma}$ are conformal to $(-\Delta){\gamma}$ via half space model and ball model of hyperbolic spaces when $\gamma\in\mathbb{N}$. To circumvent this, we introduce another family of fractional operators $\tilde{P}{\gamma}$ on $\mathbb{H}n$ which are conformal to the fractional Laplacians on $\mathbb{R}n{+}$ and $\mathbb{B}n$. It is worthwhile to note that $\tilde{P}{\gamma}\not =P{\gamma}$ unless $\gamma$ is an integer. We establish the fractional Poincar\'e-Sobolev inequalities associated with both $P_{\gamma}$ and $\tilde{P}{\gamma}$ on $\mathbb{H}n$. In particular, when $n\geq 3$ and $\frac{n-1}{2}\leq \gamma<\frac{n}{2}$, we prove that the sharp constants in the $\gamma$-th order of Poincar\'e-Sobolev inequalities on the hyperbolic space associated with $P{\gamma}$ and $\tilde{P}{\gamma}$ coincide with the best $\gamma$-th order Sobolev constant in the $n$-dimensional Euclidean space $\mathbb{R}n$. We also establish fractional Hardy-Sobolev-Maz'ya inequality on $\mathbb{R}{n}+$ and $\mathbb{B}n$ and prove that the sharp constants in the $\gamma$-th order Hardy-Sobolev-Maz'ya inequalities on half space $\mathbb{R}{n}_+$ and unit ball $\mathbb{B}n$ are the same as the best $\gamma$-th order Sobolev constants in $\mathbb{R}n$ when $n\geq 3$ and $\frac{n-1}{2}\leq \gamma<\frac{n}{2}$. Our methods crucially rely on the Helgason-Fourier analysis on hyperbolic spaces and delicate analysis of special functions.

Summary

We haven't generated a summary for this paper yet.