3D Multi-Target Localization Via Intelligent Reflecting Surface: Protocol and Analysis (2310.15574v2)
Abstract: With the emerging environment-aware applications, ubiquitous sensing is expected to play a key role in future networks. In this paper, we study a 3-dimensional (3D) multi-target localization system where multiple intelligent reflecting surfaces (IRSs) are applied to create virtual line-of-sight (LoS) links that bypass the base station (BS) and targets. To fully unveil the fundamental limit of IRS for sensing, we first study a single-target-single-IRS case and propose a novel \textit{two-stage localization protocol} by controlling the on/off state of IRS. To be specific, in the IRS-off stage, we derive the Cram\'{e}r-Rao bound (CRB) of the azimuth/elevation direction-of-arrival (DoA) of the BS-target link and design a DoA estimator based on the MUSIC algorithm. In the IRS-on stage, the CRB of the azimuth/elevation DoA of the IRS-target link is derived and a simple DoA estimator based on the on-grid IRS beam scanning method is proposed. Particularly, the impact of echo signals reflected by IRS from different paths on sensing performance is analyzed. Moreover, we prove that the single-beam of the IRS is not capable of sensing, but it can be achieved with \textit{multi-beam}. Based on the two obtained DoAs, the 3D single-target location is constructed. We then extend to the multi-target-multi-IRS case and propose an \textit{IRS-adaptive sensing protocol} by controlling the on/off state of multiple IRSs, and a multi-target localization algorithm is developed. Simulation results demonstrate the effectiveness of our scheme and show that sub-meter-level positioning accuracy can be achieved.
- A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on fundamental limits of integrated sensing and communication,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 994–1034, 2nd Quat. 2022.
- F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, Jun. 2020.
- K. Meng, Q. Wu, J. Xu, W. Chen, Z. Feng, R. Schober, and A. L. Swindlehurst, “UAV-enabled integrated sensing and communication: Opportunities and challenges,” IEEE Wireless Commun., pp. 1–9, 2023, early access, doi: 10.1109/MWC.131.2200442.
- J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE J. Sel. Top. Sign. Proces., vol. 15, no. 6, pp. 1295–1315, Nov. 2021.
- 3GPP, “Study on integrated sensing and communication,” Accessed on September, 1, 2023. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=4044.
- C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan, H. Ren, M. D. Renzo, A. Lee Swindlehurst, R. Zhang, and A. Y. Zhang, “An overview of signal processing techniques for RIS/IRS-aided wireless systems,” IEEE J. Sel. Top. Sign. Proces., vol. 16, no. 5, pp. 883–917, Aug. 2022.
- Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1546–1577, 3rd Quat. 2021.
- Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
- M. Hua, L. Yang, Q. Wu, C. Pan, C. Li, and A. L. Swindlehurst, “UAV-assisted intelligent reflecting surface symbiotic radio system,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5769–5785, Sept. 2021.
- Z. Wei, Y. Cai, Z. Sun, D. W. K. Ng, J. Yuan, M. Zhou, and L. Sun, “Sum-rate maximization for IRS-assisted UAV OFDMA communication systems,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2530–2550, Apr. 2021.
- C. You, Z. Kang, Y. Zeng, and R. Zhang, “Enabling smart reflection in integrated air-ground wireless network: IRS meets UAV,” IEEE Wireless Commun., vol. 28, no. 6, pp. 138–144, Dec. 2021.
- G. Chen, Q. Wu, W. Chen, D. W. K. Ng, and L. Hanzo, “IRS-aided wireless powered MEC systems: TDMA or NOMA for computation offloading?” IEEE Trans. Wireless Commun., vol. 22, no. 2, pp. 1201–1218, Feb. 2023.
- F. Zhou, C. You, and R. Zhang, “Delay-optimal scheduling for IRS-aided mobile edge computing,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 740–744, Apr. 2021.
- G. Chen, Q. Wu, R. Liu, J. Wu, and C. Fang, “IRS aided MEC systems with binary offloading: A unified framework for dynamic IRS beamforming,” IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 349–365, Feb. 2023.
- M. Hua, Q. Wu, C. He, S. Ma, and W. Chen, “Joint active and passive beamforming design for IRS-aided radar-communication,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2278–2294, Apr. 2023.
- K. Meng, Q. Wu, R. Schober, and W. Chen, “Intelligent reflecting surface enabled multi-target sensing,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8313–8330, Dec. 2022.
- R. Liu, M. Li, Q. Liu, and A. L. Swindlehurst, “Dual-functional radar-communication waveform design: A symbol-level precoding approach,” IEEE J. Sel. Top. Sign. Proces., vol. 15, no. 6, pp. 1316–1331, Nov. 2021.
- X. Wang, Z. Fei, Z. Zheng, and J. Guo, “Joint waveform design and passive beamforming for RIS-assisted dual-functional radar-communication system,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5131–5136, May 2021.
- M. Hua, Q. Wu, W. Chen, O. A. Dobre, and A. Lee Swindlehurst, “Secure intelligent reflecting surface aided integrated sensing and communication,” IEEE Trans. Wireless Commun., 2023, early access, doi: 10.1109/TWC.2023.3280179.
- X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with intelligent reflecting surface: Architecture and performance,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2070–2084, Jul. 2022.
- X. Hu, C. Liu, M. Peng, and C. Zhong, “IRS-based integrated location sensing and communication for mmwave SIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 4132–4145, Jun. 2023.
- X. Song, J. Xu, F. Liu, T. X. Han, and Y. C. Eldar, “Intelligent reflecting surface enabled sensing: Cramer-rao bound optimization,” IEEE Trans. Signal Process., vol. 71, pp. 2011–2026, May 2023.
- R. Li, X. Shao, S. Sun, M. Tao, and R. Zhang, “Beam scanning for integrated sensing and communication in IRS-aided mmwave systems,” 2023. [Online]. Available: https://arxiv.org/abs/2307.00200.
- Z. Yang, H. Zhang, B. Di, H. Zhang, K. Bian, and L. Song, “Wireless indoor simultaneous localization and mapping using reconfigurable intelligent surface,” in Proc. GLOBECOM, Madrid, Spain, 2021, pp. 1–6.
- M. Hua, Q. Wu, W. Chen, Z. Fei, H. C. So, and C. Yuen, “Intelligent reflecting surface assisted localization: Performance analysis and algorithm design,” IEEE Wireless Commun. Lett., 2023, early access, doi: 10.1109/LWC.2023.3320728.
- A. Elzanaty, A. Guerra, F. Guidi, and M.-S. Alouini, “Reconfigurable intelligent surfaces for localization: Position and orientation error bounds,” IEEE Trans. Signal Process., vol. 69, pp. 5386–5402, Aug. 2021.
- K. Keykhosravi, M. F. Keskin, G. Seco-Granados, and H. Wymeersch, “SISO RIS-enabled joint 3D downlink localization and synchronization,” in Proc. ICC, Montreal, QC, Canada, 2021, pp. 1–6.
- K. Keykhosravi, M. F. Keskin, S. Dwivedi, G. Seco-Granados, and H. Wymeersch, “Semi-passive 3D positioning of multiple RIS-enabled users,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 11 073–11 077, Oct. 2021.
- S. Aditya, A. F. Molisch, and H. M. Behairy, “A survey on the impact of multipath on wideband time-of-arrival based localization,” Proc. IEEE, vol. 106, no. 7, pp. 1183–1203, Jul. 2018.
- X. Pang, W. Mei, N. Zhao, and R. Zhang, “Cellular sensing via cooperative intelligent reflecting surfaces,” IEEE Trans. Veh. Technol., pp. 1–6, 2023, early access, doi: 10.1109/TVT.2023.3283270.
- Z. Xing, R. Wang, X. Yuan, and J. Wu, “Location-aware beamforming design for reconfigurable intelligent surface aided communication system,” in Proc. ICCC, Xiamen, China, 2021, pp. 201–206.
- M. Cheney, “The linear sampling method and the MUSIC algorithm,” Inverse problems, vol. 17, no. 4, p. 591, 2001.
- Y. Yang and R. S. Blum, “MIMO radar waveform design based on mutual information and minimum mean-square error estimation,” IEEE Aerosp. Electron. Syst., vol. 43, no. 1, pp. 330–343, Jan. 2007.
- I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3873–3883, Oct. 2006.
- P. Stoica and G. Ganesan, “Maximum-SNR spatial-temporal formatting designs for MIMO channels,” IEEE Trans. Signal Process., vol. 50, no. 12, pp. 3036–3042, Dec. 2002.