Invalidation of the Bloch-Redfield Equation in Sub-Ohmic Regime via a Practical Time-Convolutionless Fourth-Order Master Equation (2310.15089v4)
Abstract: Despite recent advances in quantum sciences, a quantum master equation that accurately and simply characterizes open quantum dynamics across extremely long timescales and in dispersive environments is still needed. In this study, we optimize the computation of the fourth-order time-convolutionless master equation to meet this need. Early versions of this master equation required computing a multidimensional integral, limiting its use. Our master equation accounts for simultaneous relaxation and dephasing, resulting in coefficients proportional to the system's spectral density over frequency derivative. In sub-Ohmic environments, this derivative induces infrared divergence in the master equation, invalidating the second-order Bloch-Redfield master equation findings. We analyze the approach to a ground state in a generic open quantum system and demonstrate that it is not reliably computed by the Bloch-Redfield equation alone. The optimized fourth-order equation shows that the ground-state approach is accurate to second order in bath coupling regardless of the dispersion, even though it can diverge in the fourth order at zero temperature.
- J. Fröhlich and B. Schubnel, The preparation of states in quantum mechanics, Journal of Mathematical Physics 57, 042101 (2016).
- W. H. Zurek, Quantum darwinism, Nature physics 5, 181 (2009).
- S. Shandera, N. Agarwal, and A. Kamal, Open quantum cosmological system, Physical Review D 98, 083535 (2018).
- E. Collini and G. D. Scholes, Coherent intrachain energy migration in a conjugated polymer at room temperature, science 323, 369 (2009).
- R. Feynman and F. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Annals of Physics 24, 118 (1963).
- H.-D. Meyer, U. Manthe, and L. S. Cederbaum, The multi-configurational time-dependent hartree approach, Chemical Physics Letters 165, 73 (1990).
- N. Makri, Small matrix disentanglement of the path integral: overcoming the exponential tensor scaling with memory length, The Journal of Chemical Physics 152 (2020).
- Y. Tanimura and R. Kubo, Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath, Journal of the Physical Society of Japan 58, 101 (1989).
- H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2007).
- F. Bloch, Nuclear induction, Physical review 70, 460 (1946).
- T. Becker, A. Schnell, and J. Thingna, Canonically consistent quantum master equation, Physical Review Letters 129, 200403 (2022).
- C. H. Fleming and N. I. Cummings, Accuracy of perturbative master equations, Phys. Rev. E 83, 031117 (2011).
- E. B. Davies, Markovian master equations, Comm. Math. Phys. 39, 91 (1974).
- G. Schaller and T. Brandes, Preservation of positivity by dynamical coarse graining, Phys. Rev. A 78, 022106 (2008).
- F. Benatti, R. Floreanini, and U. Marzolino, Entangling two unequal atoms through a common bath, Phys. Rev. A 81, 012105 (2010).
- F. Benatti, R. Floreanini, and U. Marzolino, Environment-induced entanglement in a refined weak-coupling limit, EPL (Europhysics Letters) 88, 20011 (2009).
- J. D. Cresser and C. Facer, Coarse-graining in the derivation of markovian master equations and its significance in quantum thermodynamics (2017), arXiv:1710.09939 [quant-ph] .
- D. Farina and V. Giovannetti, Open-quantum-system dynamics: Recovering positivity of the redfield equation via the partial secular approximation, Phys. Rev. A 100, 012107 (2019).
- R. Hartmann and W. T. Strunz, Accuracy assessment of perturbative master equations: Embracing nonpositivity, Phys. Rev. A 101, 012103 (2020).
- E. Mozgunov and D. Lidar, Completely positive master equation for arbitrary driving and small level spacing, 4, 227 (2020), 1908.01095 [Quantum] .
- N. Vogt, J. Jeske, and J. H. Cole, Stochastic bloch-redfield theory: Quantum jumps in a solid-state environment, Phys. Rev. B 88, 174514 (2013).
- T. V. Tscherbul and P. Brumer, Partial secular bloch-redfield master equation for incoherent excitation of multilevel quantum systems, The Journal of Chemical Physics 142, 104107 (2015), https://doi.org/10.1063/1.4908130 .
- A. Trushechkin, Unified gorini-kossakowski-lindblad-sudarshan quantum master equation beyond the secular approximation, Phys. Rev. A 103, 062226 (2021a).
- M. Gerry and D. Segal, Full counting statistics and coherences: Fluctuation symmetry in heat transport with the unified quantum master equation, Physical Review E 107, 054115 (2023).
- B. Palmieri, D. Abramavicius, and S. Mukamel, Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes, The Journal of Chemical Physics 130, 204512 (2009), https://doi.org/10.1063/1.3142485 .
- G. Kiršanskas, M. Franckié, and A. Wacker, Phenomenological position and energy resolving lindblad approach to quantum kinetics, Phys. Rev. B 97, 035432 (2018).
- K. Ptaszyński and M. Esposito, Thermodynamics of quantum information flows, Phys. Rev. Lett. 122, 150603 (2019).
- F. Nathan and M. S. Rudner, Universal lindblad equation for open quantum systems, Phys. Rev. B 102, 115109 (2020).
- M. Merkli, Quantum markovian master equations: Resonance theory shows validity for all time scales, Annals of Physics 412, 167996 (2020).
- M. Merkli, Dynamics of open quantum systems i, oscillation and decay, Quantum 6, 615 (2022a).
- M. Merkli, Dynamics of open quantum systems ii, markovian approximation, Quantum 6, 616 (2022b).
- T. Becker, L.-N. Wu, and A. Eckardt, Lindbladian approximation beyond ultraweak coupling, Phys. Rev. E 104, 014110 (2021).
- A. D’Abbruzzo, V. Cavina, and V. Giovannetti, A time-dependent regularization of the redfield equation, SciPost Physics 15, 117 (2023).
- P. P. Potts, A. A. S. Kalaee, and A. Wacker, A thermodynamically consistent markovian master equation beyond the secular approximation, New Journal of Physics 23, 123013 (2021).
- C. Uchiyama, Dynamics of a quantum interacting system-extended global approach beyond the born-markov and secular approximation, arXiv preprint arXiv:2303.02926 (2023).
- M. Winczewski and R. Alicki, Renormalization in the theory of open quantum systems via the self-consistency condition, arXiv preprint arXiv:2112.11962 (2021).
- M. Tokuyama and H. Mori, Statistical-mechanical theory of the boltzmann equation and fluctuations in μ𝜇\muitalic_μ space, Progress of Theoretical Physics 56, 1073 (1976).
- B. Yoon, J. Deutch, and J. H. Freed, A comparison of generalized cumulant and projection operator methods in spin-relaxation theory, The Journal of Chemical Physics 62, 4687 (1975).
- S. Mukamel, I. Oppenheim, and J. Ross, Statistical reduction for strongly driven simple quantum systems, Phys. Rev. A 17, 1988 (1978).
- F. Shibata, Y. Takahashi, and N. Hashitsume, A generalized stochastic liouville equation. non-markovian versus memoryless master equations, Journal of Statistical Physics 17, 171 (1977).
- F. Shibata and T. Arimitsu, Expansion formulas in nonequilibrium statistical mechanics, Journal of the Physical Society of Japan 49, 891 (1980).
- B. B. Laird, J. Budimir, and J. L. Skinner, Quantum-mechanical derivation of the bloch equations: Beyond the weak-coupling limit, The Journal of chemical physics 94, 4391 (1991).
- D. R. Reichman, F. L. H. Brown, and P. Neu, Cumulant expansions and the spin-boson problem, Phys. Rev. E 55, 2328 (1997).
- H.-P. Breuer, B. Kappler, and F. Petruccione, Stochastic wave-function method for non-markovian quantum master equations, Physical Review A 59, 1633–1643 (1999).
- S. Jang, J. Cao, and R. J. Silbey, Fourth-order quantum master equation and its markovian bath limit, The Journal of Chemical Physics 116, 2705 (2002), https://doi.org/10.1063/1.1445105 .
- A. Trushechkin, Higher-order corrections to the redfield equation with respect to the system-bath coupling based on the hierarchical equations of motion, Lobachevskii Journal of Mathematics 40, 1606 (2019).
- A. S. Trushechkin, Derivation of the redfield quantum master equation and corrections to it by the bogoliubov method, Proceedings of the Steklov Institute of Mathematics 313, 246 (2021b).
- K. Nestmann and C. Timm, Time-convolutionless master equation: Perturbative expansions to arbitrary order and application to quantum dots (2019), arXiv:1903.05132 [cond-mat.mes-hall] .
- A. Y. Karasev and A. E. Teretenkov, Time-convolutionless master equations for composite open quantum systems (2023), arXiv:2304.08627 [quant-ph] .
- W. De Roeck and A. Kupiainen, Approach to ground state and time-independent photon bound for massless spin-boson models, in Annales Henri Poincaré, Vol. 14 (Springer, 2013) pp. 253–311.
- J. Dereziński and C. Gérard, Scattering theory of infrared divergent pauli-fierz hamiltonians, in Annales Henri Poincaré, Vol. 5 (Springer, 2004) pp. 523–577.
- H. Araki and E. Woods, Representations of the canonical commutation relations describing a nonrelativistic infinite free bose gas, Journal of Mathematical Physics 4, 637 (1963).
- M. Merkli, The ideal quantum gas, in Open Quantum Systems I: The Hamiltonian Approach (Springer, 2006) pp. 183–233.
- H. Spohn, Ground state (s) of the spin-boson hamiltonian, Communications in mathematical physics 123, 277 (1989).
- A. Strominger, Lectures on the infrared structure of gravity and gauge theory (2018), arXiv:1703.05448 [hep-th] .
- V. Jakšić and C.-A. Pillet, On a model for quantum friction iii. ergodic properties of the spin-boson system, Communications in Mathematical Physics 178, 627 (1996).
- V. Bach, J. Fröhlich, and I. M. Sigal, Return to equilibrium, Journal of Mathematical Physics 41, 3985 (2000).
- U. Weiss, Quantum Dissipative Systems, 4th ed. (WORLD SCIENTIFIC, 2012) https://www.worldscientific.com/doi/pdf/10.1142/8334 .
- S. Nemati, C. Henkel, and J. Anders, Coupling function from bath density of states, Europhysics Letters 139, 36002 (2022).
- J. Faupin and I. M. Sigal, On rayleigh scattering in non-relativistic quantum electrodynamics, Communications in Mathematical Physics 328, 1199 (2014).
- W. De Roeck, M. Griesemer, and A. Kupiainen, Asymptotic completeness for the massless spin-boson model, Advances in Mathematics 268, 62 (2015).
- A. Arai and M. Hirokawa, On the existence and uniqueness of ground states of a generalized spin-boson model, journal of functional analysis 151, 455 (1997).
- V. Bach, J. Fröhlich, and I. M. Sigal, Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Communications in Mathematical Physics 207, 249 (1999).
- C. Gerard, On the existence of ground states for massless pauli-fierz hamiltonians, Annales Henri Poincar 1, 443 (2000).
- M. Griesemer, E. H. Lieb, and M. Loss, Ground states in non-relativistic quantum electrodynamics, Inventiones mathematicae 145, 557 (2001).
- D. Hasler and I. Herbst, Ground states in the spin boson model, in Annales Henri Poincaré, Vol. 12 (Springer, 2011) pp. 621–677.
- A. Abdesselam, The ground state energy of the massless spin-boson model, in Annales Henri Poincaré, Vol. 12 (Springer, 2011) pp. 1321–1347.
- J. Cresser and J. Anders, Weak and ultrastrong coupling limits of the quantum mean force gibbs state, Physical Review Letters 127, 250601 (2021).
- J. Thingna, J.-S. Wang, and P. Hänggi, Generalized gibbs state with modified redfield solution: Exact agreement up to second order, The Journal of Chemical Physics 136, 194110 (2012), https://doi.org/10.1063/1.4718706 .
- J. S. Lee and J. Yeo, Perturbative steady states of completely positive quantum master equations, Physical Review E 106, 054145 (2022).
- R. Bulla, N.-H. Tong, and M. Vojta, Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model, Physical review letters 91, 170601 (2003).
- A. Shnirman and G. Schön, Dephasing and renormalization in quantum two-level systems, in Quantum Noise in Mesoscopic Physics (Springer, 2003) pp. 357–370.
- J. Dereziński, Van hove hamiltonians–exactly solvable models of the infrared and ultraviolet problem, in Annales Henri Poincaré, Vol. 4 (Springer, 2003) pp. 713–738.
- R. B. Dingle, Asymptotic expansions: their derivation and interpretation (Academic Press, 1973).
- F. Olver, Asymptotics and special functions (AK Peters/CRC Press, 1997).
- R. Bhatia, Matrix Analysis, Vol. 169 (Springer, 1997).