Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Bounds and Liouville theorems for Quasi-linear equations on compact Manifolds with nonnegative Ricci curvature (2310.14943v3)

Published 23 Oct 2023 in math.AP and math.DG

Abstract: In this work we establish a gradient bound and Liouville-type theorems for solutions to Quasi-linear elliptic equations on compact Riemannian Manifolds with nonnegative Ricci curvature. Also, we provide a local splitting theorem when the inequality in the gradient bound becomes equality at some point. Moreover, we prove a Harnack-type inequality and an ABP estimate for the gradient of solutions in domains contained in the manifold.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com