Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Player Re-Identification Using Body Part Appearences (2310.14469v1)

Published 23 Oct 2023 in cs.CV

Abstract: We propose a neural network architecture that learns body part appearances for soccer player re-identification. Our model consists of a two-stream network (one stream for appearance map extraction and the other for body part map extraction) and a bilinear-pooling layer that generates and spatially pools the body part map. Each local feature of the body part map is obtained by a bilinear mapping of the corresponding local appearance and body part descriptors. Our novel representation yields a robust image-matching feature map, which results from combining the local similarities of the relevant body parts with the weighted appearance similarity. Our model does not require any part annotation on the SoccerNet-V3 re-identification dataset to train the network. Instead, we use a sub-network of an existing pose estimation network (OpenPose) to initialize the part substream and then train the entire network to minimize the triplet loss. The appearance stream is pre-trained on the ImageNet dataset, and the part stream is trained from scratch for the SoccerNet-V3 dataset. We demonstrate the validity of our model by showing that it outperforms state-of-the-art models such as OsNet and InceptionNet.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mahesh Bhosale (3 papers)
  2. Abhishek Kumar (172 papers)
  3. David Doermann (54 papers)