Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CT-GAT: Cross-Task Generative Adversarial Attack based on Transferability (2310.14265v2)

Published 22 Oct 2023 in cs.CL

Abstract: Neural network models are vulnerable to adversarial examples, and adversarial transferability further increases the risk of adversarial attacks. Current methods based on transferability often rely on substitute models, which can be impractical and costly in real-world scenarios due to the unavailability of training data and the victim model's structural details. In this paper, we propose a novel approach that directly constructs adversarial examples by extracting transferable features across various tasks. Our key insight is that adversarial transferability can extend across different tasks. Specifically, we train a sequence-to-sequence generative model named CT-GAT using adversarial sample data collected from multiple tasks to acquire universal adversarial features and generate adversarial examples for different tasks. We conduct experiments on ten distinct datasets, and the results demonstrate that our method achieves superior attack performance with small cost.

Citations (3)

Summary

We haven't generated a summary for this paper yet.