Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ASBART:Accelerated Soft Bayes Additive Regression Trees (2310.13975v1)

Published 21 Oct 2023 in stat.ML, cs.LG, and stat.CO

Abstract: Bayes additive regression trees(BART) is a nonparametric regression model which has gained wide-spread popularity in recent years due to its flexibility and high accuracy of estimation. Soft BART,one variation of BART,improves both practically and heoretically on existing Bayesian sum-of-trees models. One bottleneck for Soft BART is its slow speed in the long MCMC loop. Compared to BART,it use more than about 20 times to complete the calculation with the default setting. We proposed a variant of BART named accelerate Soft BART(ASBART). Simulation studies show that the new method is about 10 times faster than the Soft BART with comparable accuracy. Our code is open-source and available at https://github.com/richael008/XSBART.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com