Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Properties in Computation Tree Logic (2310.13778v1)

Published 20 Oct 2023 in cs.LO and cs.FL

Abstract: We consider the problem of automatically inferring specifications in the branching-time logic, Computation Tree Logic (CTL), from a given system. Designing functional and usable specifications has always been one of the biggest challenges of formal methods. While in recent years, works have focused on automatically designing specifications in linear-time logics such as Linear Temporal Logic (LTL) and Signal Temporal Logic (STL), little attention has been given to branching-time logics despite its popularity in formal methods. We intend to infer concise (thus, interpretable) CTL formulas from a given finite state model of the system in consideration. However, inferring specification only from the given model (and, in general, from only positive examples) is an ill-posed problem. As a result, we infer a CTL formula that, along with being concise, is also language-minimal, meaning that it is rather specific to the given model. We design a counter-example guided algorithm to infer a concise and language-minimal CTL formula via the generation of undesirable models. In the process, we also develop, for the first time, a passive learning algorithm to infer CTL formulas from a set of desirable and undesirable Kripke structures. The passive learning algorithm involves encoding a popular CTL model-checking procedure in the Boolean Satisfiability problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.