Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On quantum melting of superfluid vortex crystals: from Lifshitz scalar to dual gravity (2310.13741v2)

Published 20 Oct 2023 in cond-mat.quant-gas, cond-mat.soft, cond-mat.str-el, cond-mat.supr-con, and hep-th

Abstract: Despite a long history of studies of vortex crystals in rotating superfluids, their melting due to quantum fluctuations is poorly understood. Here we develop a fracton-elasticity duality to investigate a two-dimensional vortex lattice within the fast rotation regime, where the Lifshitz model of the collective Tkachenko mode serves as the leading-order low-energy effective theory. We incorporate topological defects and discuss several quantum melting scenarios triggered by their proliferation. Furthermore, we lay the groundwork for a dual non-linear emergent gravity description of the superfluid vortex crystals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. B. V. Svistunov, E. S. Babaev and N. V. Prokof'ev, Superfluid states of matter, Crc Press (2015).
  2. E. B. Sonin, Dynamics of Quantised Vortices in Superfluids, Cambridge University Press, 10.1017/CBO9781139047616 (2016).
  3. T. Simula, Quantised Vortices, 2053-2571. Morgan & Claypool Publishers, ISBN 978-1-64327-126-2, 10.1088/2053-2571/aafb9d (2019).
  4. S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, second ed. edn., ISBN 9780521514682 (2011).
  5. E. Fradkin, Field theories of condensed matter physics, Cambridge University Press (2013).
  6. S. Sachdev, Quantum Phases of Matter, Cambridge University Press (2023).
  7. E. B. Sonin, Vortex oscillations and hydrodynamics of rotating superfluids, Rev. Mod. Phys. 59(1), 87 (1987).
  8. N. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57(6), 539 (2008), 10.1080/00018730802564122, 0810.4398.
  9. A. L. Fetter, Rotating trapped bose-einstein condensates, Rev. Mod. Phys. 81, 647 (2009), 10.1103/RevModPhys.81.647.
  10. I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008), 10.1103/RevModPhys.80.885.
  11. A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5, 1174 (1957).
  12. E. B. Sonin, Tkachenko waves, JETP Lett. 98(11), 758 (2014), 10.1134/s0021364013240181, 1311.1781.
  13. V. Tkachenko, Stability of vortex lattices, Sov. Phys. JETP 23(6), 1049 (1966).
  14. E. Sonin, Vortex-lattice vibrations in a rotating helium II, JETP Lett. 43, 1027 (1976).
  15. G. Volovik and V. Dotsenko, Poisson brackets and continuous dynamics of the vortex lattice in rotating he-ii, JETP Lett 29(10) (1979).
  16. G. Volovik and V. Dotsenko, Hydrodynamics of defects in condensed media, using as examples vortices in rotating he ii and disclinations in a planar magnet, Soviet Phys. JETP 51(1), 65 (1980).
  17. G. Baym and E. Chandler, The hydrodynamics of rotating superfluids. i. zero-temperature, nondissipative theory, J. Low Temp. Phys. 50(1), 57 (1983).
  18. J. Sinova, C. B. Hanna and A. H. MacDonald, Quantum Melting and Absence of Bose-Einstein Condensation in Two-Dimensional Vortex Matter, Phys. Rev. Lett. 89, 030403 (2002), 10.1103/PhysRevLett.89.030403, cond-mat/0201020.
  19. G. Baym, Tkachenko Modes of Vortex Lattices in Rapidly Rotating Bose-Einstein Condensates, Phys. Rev. Lett. 91(11), 110402 (2003), 10.1103/PhysRevLett.91.110402.
  20. G. Baym, Vortex lattices in rapidly rotating Bose-Einstein condensates: Modes and correlation functions, Phys. Rev. A 69, 043618 (2004), 10.1103/PhysRevA.69.043618, cond-mat/0308342.
  21. H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons, Phys. Rev. Lett. 110(18), 181601 (2013), 10.1103/PhysRevLett.110.181601.
  22. Effective field theory of a vortex lattice in a bosonic superfluid, SciPost Phys. 5, 39 (2018), 10.21468/SciPostPhys.5.4.039, 1803.10934.
  23. S. Moroz and D. T. Son, Bosonic Superfluid on the Lowest Landau Level, Phys. Rev. Lett. 122, 235301 (2019), 10.1103/PhysRevLett.122.235301, 1901.06088.
  24. Noncommutative field theory of the tkachenko mode: Symmetries and decay rate, Phys. Rev. Res. 6, L012040 (2024), 10.1103/PhysRevResearch.6.L012040.
  25. Observation of tkachenko oscillations in rapidly rotating bose-einstein condensates, Phys. Rev. Lett. 91(10), 100402 (2003).
  26. M. Ruderman, Long Period Oscillations in Rotating Neutron Stars, Nature 225, 619 (1970), 10.1038/225619a0.
  27. P. G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics. Cambridge University Press, 10.1017/CBO9780511624063 (1993).
  28. P. Wiegmann and A. G. Abanov, Anomalous hydrodynamics of two-dimensional vortex fluids, Phys. Rev. Lett. 113, 034501 (2014), 10.1103/PhysRevLett.113.034501.
  29. D. Doshi and A. Gromov, Vortices as fractons, Communications Physics 4(1), 44 (2021), 10.1038/s42005-021-00540-4.
  30. M. Pretko and L. Radzihovsky, Fracton-elasticity duality, Phys. Rev. Lett. 120, 195301 (2018), 10.1103/PhysRevLett.120.195301.
  31. M. Pretko and L. Radzihovsky, Symmetry-enriched fracton phases from supersolid duality, Phys. Rev. Lett. 121, 235301 (2018), 10.1103/PhysRevLett.121.235301.
  32. A. Gromov, Chiral topological elasticity and fracton order, Phys. Rev. Lett. 122, 076403 (2019), 10.1103/PhysRevLett.122.076403.
  33. M. Pretko, Z. Zhai and L. Radzihovsky, Crystal-to-fracton tensor gauge theory dualities, Phys. Rev. B 100, 134113 (2019), 10.1103/PhysRevB.100.134113.
  34. A. Kumar and A. C. Potter, Symmetry-enforced fractonicity and two-dimensional quantum crystal melting, Phys. Rev. B 100, 045119 (2019), 10.1103/PhysRevB.100.045119.
  35. Z. Zhai and L. Radzihovsky, Two-dimensional melting via sine-gordon duality, Phys. Rev. B 100, 094105 (2019), 10.1103/PhysRevB.100.094105.
  36. A. Gromov and P. Surówka, On duality between Cosserat elasticity and fractons, SciPost Phys. 8, 065 (2020), 10.21468/SciPostPhys.8.4.065.
  37. A. Gromov and L. Radzihovsky, Fracton matter, arXiv:2211.05130 (2022).
  38. H. Kleinert, Duality transformation for defect melting, Physics Letters A 91(6), 295 (1982), 10.1016/0375-9601(82)90578-3.
  39. H. Kleinert, Lattice defect model with two successive melting transitions, Physics Letters A 130(8-9), 443 (1988), 10.1016/0375-9601(88)90705-0.
  40. H. Kleinert, Gauge Fields in Condensed Matter, WORLD SCIENTIFIC, 10.1142/0356 (1989).
  41. J. Zaanen, Z. Nussinov and S. Mukhin, Duality in 2+ 1d quantum elasticity: superconductivity and quantum nematic order, Annals of Physics 310(1), 181 (2004).
  42. Dual gauge field theory of quantum liquid crystals in two dimensions, Physics Reports 683, 1 (2017).
  43. Principles of Condensed Matter Physics, Cambridge University Press, 10.1017/CBO9780511813467 (1995).
  44. Fracton-elasticity duality of two-dimensional superfluid vortex crystals: defect interactions and quantum melting, SciPost Phys. 9, 076 (2020), 10.21468/SciPostPhys.9.5.076, 2005.12317.
  45. E. Frey, D. R. Nelson and D. S. Fisher, Interstitials, vacancies, and supersolid order in vortex crystals, Phys. Rev. B 49, 9723 (1994), 10.1103/PhysRevB.49.9723.
  46. L. Balents and L. Radzihovsky, Continuous 3d freezing transition in layered superconductors, Phys. Rev. Lett. 76, 3416 (1996), 10.1103/PhysRevLett.76.3416.
  47. B. Jeevanesan, C. Benzoni and S. Moroz, Surface waves and bulk Ruderman mode of a bosonic superfluid vortex crystal in the lowest Landau level, Phys. Rev. B 106, 144501 (2022), 10.1103/PhysRevB.106.144501, 2202.10924.
  48. E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals of Physics 310(2), 493 (2004).
  49. L. Radzihovsky, Lifshitz gauge duality, Phys. Rev. B 106, 224510 (2022), 10.1103/PhysRevB.106.224510.
  50. (2+1)-dimensional compact lifshitz theory, tensor gauge theory, and fractons, Phys. Rev. B 108, 075106 (2023), 10.1103/PhysRevB.108.075106.
  51. M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018), 10.1103/PhysRevB.98.115134.
  52. M. E. Peskin, Mandelstam-'t Hooft Duality in Abelian Lattice Models, Ann. Phys. 113(1), 122 (1978), 10.1016/0003-4916(78)90252-X.
  53. C. Dasgupta and B. I. Halperin, Phase transition in a lattice model of superconductivity, Phys. Rev. Lett. 47, 1556 (1981), 10.1103/PhysRevLett.47.1556.
  54. E. B. Sonin, Ground state and Tkachenko modes of a rapidly rotating Bose-Einstein condensate in the lowest-Landau-level state, Phys. Rev. A 72, 021606 (2005), 10.1103/PhysRevA.72.021606, cond-mat/0411641.
  55. Tkachenko modes and their damping in the vortex lattice regime of rap idly rotating bosons, Phys. Rev. A 83, 033604 (2011), 10.1103/PhysRevA.83.033604, 1101.0269.
  56. A. Andreev and I. Lifshits, Quantum theory of defects in crystals, Zhur Eksper Teoret Fiziki 56(6), 2057 (1969).
  57. M. Pretko, Subdimensional particle structure of higher rank U⁢(1)𝑈1U(1)italic_U ( 1 ) spin liquids, Phys. Rev. B 95(11), 115139 (2017), 10.1103/PhysRevB.95.115139, 1604.05329.
  58. D. X. Nguyen, D. T. Son and C. Wu, Lowest landau level stress tensor and structure factor of trial quantum hall wave functions (2014), 1411.3316.
  59. Volume-preserving diffeomorphism as nonabelian higher-rank gauge symmetry, SciPost Phys. 12, 050 (2022), 10.21468/SciPostPhys.12.2.050, 2203.05004.
  60. S. A. Gifford and G. Baym, Dislocation-mediated melting in superfluid vortex lattices, Phys. Rev. A 78, 043607 (2008), 10.1103/PhysRevA.78.043607.
  61. P. Coleman, Introduction to Many-Body Physics, Cambridge University Press, 10.1017/CBO9781139020916 (2015).
  62. H. Kleinert, Gravity as a theory of defects in a crystal with only second gradient elasticity, Annalen der Physik 499(2), 117 (1987), https://doi.org/10.1002/andp.19874990206, https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19874990206.
  63. H. Kleinert, Emerging gravity from defects in world crystal, Brazilian Journal of Physics (2005).
  64. C. Xu, Novel algebraic boson liquid phase with soft graviton excitations (2006), cond-mat/0602443.
  65. C. Xu and P. Horava, Emergent gravity at a lifshitz point from a bose liquid on the lattice, Phys. Rev. D 81, 104033 (2010), 10.1103/PhysRevD.81.104033.
  66. M. Pretko, Emergent gravity of fractons: Mach's principle revisited, Phys. Rev. D 96, 024051 (2017), 10.1103/PhysRevD.96.024051.
  67. A. Gromov and D. T. Son, Bimetric theory of fractional quantum hall states, Physical Review X 7(4), 041032 (2017).
  68. R. M. Wald, General Relativity, The University od Chicago Press (1984).
  69. D. T. Son, Newton-cartan geometry and the quantum hall effect, arXiv:1306.0638 (2013).
  70. S. Golkar, D. X. Nguyen and D. T. Son, Spectral sum rules and magneto-roton as emergent graviton in fractional quantum hall effect, Journal of High Energy Physics 2016(1) (2016), 10.1007/jhep01(2016)021.
  71. Short-ranged resonating valence bond physics, quantum dimer models, and ising gauge theories, Phys. Rev. B 65, 024504 (2001), 10.1103/PhysRevB.65.024504.
  72. Y.-H. Du, H. T. Lam and L. Radzihovsky, Quantum vortex lattice via lifshitz duality, arXiv:2310.13794 (2023).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com