2000 character limit reached
On quantum melting of superfluid vortex crystals: from Lifshitz scalar to dual gravity (2310.13741v2)
Published 20 Oct 2023 in cond-mat.quant-gas, cond-mat.soft, cond-mat.str-el, cond-mat.supr-con, and hep-th
Abstract: Despite a long history of studies of vortex crystals in rotating superfluids, their melting due to quantum fluctuations is poorly understood. Here we develop a fracton-elasticity duality to investigate a two-dimensional vortex lattice within the fast rotation regime, where the Lifshitz model of the collective Tkachenko mode serves as the leading-order low-energy effective theory. We incorporate topological defects and discuss several quantum melting scenarios triggered by their proliferation. Furthermore, we lay the groundwork for a dual non-linear emergent gravity description of the superfluid vortex crystals.
- B. V. Svistunov, E. S. Babaev and N. V. Prokof'ev, Superfluid states of matter, Crc Press (2015).
- E. B. Sonin, Dynamics of Quantised Vortices in Superfluids, Cambridge University Press, 10.1017/CBO9781139047616 (2016).
- T. Simula, Quantised Vortices, 2053-2571. Morgan & Claypool Publishers, ISBN 978-1-64327-126-2, 10.1088/2053-2571/aafb9d (2019).
- S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, second ed. edn., ISBN 9780521514682 (2011).
- E. Fradkin, Field theories of condensed matter physics, Cambridge University Press (2013).
- S. Sachdev, Quantum Phases of Matter, Cambridge University Press (2023).
- E. B. Sonin, Vortex oscillations and hydrodynamics of rotating superfluids, Rev. Mod. Phys. 59(1), 87 (1987).
- N. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57(6), 539 (2008), 10.1080/00018730802564122, 0810.4398.
- A. L. Fetter, Rotating trapped bose-einstein condensates, Rev. Mod. Phys. 81, 647 (2009), 10.1103/RevModPhys.81.647.
- I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008), 10.1103/RevModPhys.80.885.
- A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5, 1174 (1957).
- E. B. Sonin, Tkachenko waves, JETP Lett. 98(11), 758 (2014), 10.1134/s0021364013240181, 1311.1781.
- V. Tkachenko, Stability of vortex lattices, Sov. Phys. JETP 23(6), 1049 (1966).
- E. Sonin, Vortex-lattice vibrations in a rotating helium II, JETP Lett. 43, 1027 (1976).
- G. Volovik and V. Dotsenko, Poisson brackets and continuous dynamics of the vortex lattice in rotating he-ii, JETP Lett 29(10) (1979).
- G. Volovik and V. Dotsenko, Hydrodynamics of defects in condensed media, using as examples vortices in rotating he ii and disclinations in a planar magnet, Soviet Phys. JETP 51(1), 65 (1980).
- G. Baym and E. Chandler, The hydrodynamics of rotating superfluids. i. zero-temperature, nondissipative theory, J. Low Temp. Phys. 50(1), 57 (1983).
- J. Sinova, C. B. Hanna and A. H. MacDonald, Quantum Melting and Absence of Bose-Einstein Condensation in Two-Dimensional Vortex Matter, Phys. Rev. Lett. 89, 030403 (2002), 10.1103/PhysRevLett.89.030403, cond-mat/0201020.
- G. Baym, Tkachenko Modes of Vortex Lattices in Rapidly Rotating Bose-Einstein Condensates, Phys. Rev. Lett. 91(11), 110402 (2003), 10.1103/PhysRevLett.91.110402.
- G. Baym, Vortex lattices in rapidly rotating Bose-Einstein condensates: Modes and correlation functions, Phys. Rev. A 69, 043618 (2004), 10.1103/PhysRevA.69.043618, cond-mat/0308342.
- H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons, Phys. Rev. Lett. 110(18), 181601 (2013), 10.1103/PhysRevLett.110.181601.
- Effective field theory of a vortex lattice in a bosonic superfluid, SciPost Phys. 5, 39 (2018), 10.21468/SciPostPhys.5.4.039, 1803.10934.
- S. Moroz and D. T. Son, Bosonic Superfluid on the Lowest Landau Level, Phys. Rev. Lett. 122, 235301 (2019), 10.1103/PhysRevLett.122.235301, 1901.06088.
- Noncommutative field theory of the tkachenko mode: Symmetries and decay rate, Phys. Rev. Res. 6, L012040 (2024), 10.1103/PhysRevResearch.6.L012040.
- Observation of tkachenko oscillations in rapidly rotating bose-einstein condensates, Phys. Rev. Lett. 91(10), 100402 (2003).
- M. Ruderman, Long Period Oscillations in Rotating Neutron Stars, Nature 225, 619 (1970), 10.1038/225619a0.
- P. G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics. Cambridge University Press, 10.1017/CBO9780511624063 (1993).
- P. Wiegmann and A. G. Abanov, Anomalous hydrodynamics of two-dimensional vortex fluids, Phys. Rev. Lett. 113, 034501 (2014), 10.1103/PhysRevLett.113.034501.
- D. Doshi and A. Gromov, Vortices as fractons, Communications Physics 4(1), 44 (2021), 10.1038/s42005-021-00540-4.
- M. Pretko and L. Radzihovsky, Fracton-elasticity duality, Phys. Rev. Lett. 120, 195301 (2018), 10.1103/PhysRevLett.120.195301.
- M. Pretko and L. Radzihovsky, Symmetry-enriched fracton phases from supersolid duality, Phys. Rev. Lett. 121, 235301 (2018), 10.1103/PhysRevLett.121.235301.
- A. Gromov, Chiral topological elasticity and fracton order, Phys. Rev. Lett. 122, 076403 (2019), 10.1103/PhysRevLett.122.076403.
- M. Pretko, Z. Zhai and L. Radzihovsky, Crystal-to-fracton tensor gauge theory dualities, Phys. Rev. B 100, 134113 (2019), 10.1103/PhysRevB.100.134113.
- A. Kumar and A. C. Potter, Symmetry-enforced fractonicity and two-dimensional quantum crystal melting, Phys. Rev. B 100, 045119 (2019), 10.1103/PhysRevB.100.045119.
- Z. Zhai and L. Radzihovsky, Two-dimensional melting via sine-gordon duality, Phys. Rev. B 100, 094105 (2019), 10.1103/PhysRevB.100.094105.
- A. Gromov and P. Surówka, On duality between Cosserat elasticity and fractons, SciPost Phys. 8, 065 (2020), 10.21468/SciPostPhys.8.4.065.
- A. Gromov and L. Radzihovsky, Fracton matter, arXiv:2211.05130 (2022).
- H. Kleinert, Duality transformation for defect melting, Physics Letters A 91(6), 295 (1982), 10.1016/0375-9601(82)90578-3.
- H. Kleinert, Lattice defect model with two successive melting transitions, Physics Letters A 130(8-9), 443 (1988), 10.1016/0375-9601(88)90705-0.
- H. Kleinert, Gauge Fields in Condensed Matter, WORLD SCIENTIFIC, 10.1142/0356 (1989).
- J. Zaanen, Z. Nussinov and S. Mukhin, Duality in 2+ 1d quantum elasticity: superconductivity and quantum nematic order, Annals of Physics 310(1), 181 (2004).
- Dual gauge field theory of quantum liquid crystals in two dimensions, Physics Reports 683, 1 (2017).
- Principles of Condensed Matter Physics, Cambridge University Press, 10.1017/CBO9780511813467 (1995).
- Fracton-elasticity duality of two-dimensional superfluid vortex crystals: defect interactions and quantum melting, SciPost Phys. 9, 076 (2020), 10.21468/SciPostPhys.9.5.076, 2005.12317.
- E. Frey, D. R. Nelson and D. S. Fisher, Interstitials, vacancies, and supersolid order in vortex crystals, Phys. Rev. B 49, 9723 (1994), 10.1103/PhysRevB.49.9723.
- L. Balents and L. Radzihovsky, Continuous 3d freezing transition in layered superconductors, Phys. Rev. Lett. 76, 3416 (1996), 10.1103/PhysRevLett.76.3416.
- B. Jeevanesan, C. Benzoni and S. Moroz, Surface waves and bulk Ruderman mode of a bosonic superfluid vortex crystal in the lowest Landau level, Phys. Rev. B 106, 144501 (2022), 10.1103/PhysRevB.106.144501, 2202.10924.
- E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals of Physics 310(2), 493 (2004).
- L. Radzihovsky, Lifshitz gauge duality, Phys. Rev. B 106, 224510 (2022), 10.1103/PhysRevB.106.224510.
- (2+1)-dimensional compact lifshitz theory, tensor gauge theory, and fractons, Phys. Rev. B 108, 075106 (2023), 10.1103/PhysRevB.108.075106.
- M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018), 10.1103/PhysRevB.98.115134.
- M. E. Peskin, Mandelstam-'t Hooft Duality in Abelian Lattice Models, Ann. Phys. 113(1), 122 (1978), 10.1016/0003-4916(78)90252-X.
- C. Dasgupta and B. I. Halperin, Phase transition in a lattice model of superconductivity, Phys. Rev. Lett. 47, 1556 (1981), 10.1103/PhysRevLett.47.1556.
- E. B. Sonin, Ground state and Tkachenko modes of a rapidly rotating Bose-Einstein condensate in the lowest-Landau-level state, Phys. Rev. A 72, 021606 (2005), 10.1103/PhysRevA.72.021606, cond-mat/0411641.
- Tkachenko modes and their damping in the vortex lattice regime of rap idly rotating bosons, Phys. Rev. A 83, 033604 (2011), 10.1103/PhysRevA.83.033604, 1101.0269.
- A. Andreev and I. Lifshits, Quantum theory of defects in crystals, Zhur Eksper Teoret Fiziki 56(6), 2057 (1969).
- M. Pretko, Subdimensional particle structure of higher rank U(1)𝑈1U(1)italic_U ( 1 ) spin liquids, Phys. Rev. B 95(11), 115139 (2017), 10.1103/PhysRevB.95.115139, 1604.05329.
- D. X. Nguyen, D. T. Son and C. Wu, Lowest landau level stress tensor and structure factor of trial quantum hall wave functions (2014), 1411.3316.
- Volume-preserving diffeomorphism as nonabelian higher-rank gauge symmetry, SciPost Phys. 12, 050 (2022), 10.21468/SciPostPhys.12.2.050, 2203.05004.
- S. A. Gifford and G. Baym, Dislocation-mediated melting in superfluid vortex lattices, Phys. Rev. A 78, 043607 (2008), 10.1103/PhysRevA.78.043607.
- P. Coleman, Introduction to Many-Body Physics, Cambridge University Press, 10.1017/CBO9781139020916 (2015).
- H. Kleinert, Gravity as a theory of defects in a crystal with only second gradient elasticity, Annalen der Physik 499(2), 117 (1987), https://doi.org/10.1002/andp.19874990206, https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19874990206.
- H. Kleinert, Emerging gravity from defects in world crystal, Brazilian Journal of Physics (2005).
- C. Xu, Novel algebraic boson liquid phase with soft graviton excitations (2006), cond-mat/0602443.
- C. Xu and P. Horava, Emergent gravity at a lifshitz point from a bose liquid on the lattice, Phys. Rev. D 81, 104033 (2010), 10.1103/PhysRevD.81.104033.
- M. Pretko, Emergent gravity of fractons: Mach's principle revisited, Phys. Rev. D 96, 024051 (2017), 10.1103/PhysRevD.96.024051.
- A. Gromov and D. T. Son, Bimetric theory of fractional quantum hall states, Physical Review X 7(4), 041032 (2017).
- R. M. Wald, General Relativity, The University od Chicago Press (1984).
- D. T. Son, Newton-cartan geometry and the quantum hall effect, arXiv:1306.0638 (2013).
- S. Golkar, D. X. Nguyen and D. T. Son, Spectral sum rules and magneto-roton as emergent graviton in fractional quantum hall effect, Journal of High Energy Physics 2016(1) (2016), 10.1007/jhep01(2016)021.
- Short-ranged resonating valence bond physics, quantum dimer models, and ising gauge theories, Phys. Rev. B 65, 024504 (2001), 10.1103/PhysRevB.65.024504.
- Y.-H. Du, H. T. Lam and L. Radzihovsky, Quantum vortex lattice via lifshitz duality, arXiv:2310.13794 (2023).