Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Socially Optimal Energy Usage via Adaptive Pricing (2310.13254v2)

Published 20 Oct 2023 in cs.GT, cs.SY, and eess.SY

Abstract: A central challenge in using price signals to coordinate the electricity consumption of a group of users is the operator's lack of knowledge of the users due to privacy concerns. In this paper, we develop a two-time-scale incentive mechanism that alternately updates between the users and a system operator. As long as the users can optimize their own consumption subject to a given price, the operator does not need to know or attempt to learn any private information of the users for price design. Users adjust their consumption following the price and the system redesigns the price based on the users' consumption. We show that under mild assumptions, this iterative process converges to the social welfare solution. In particular, the cost of the users need not always be convex and its consumption can be the output of a machine learning-based load control algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. P. Pinson, H. Madsen et al., “Benefits and challenges of electrical demand response: A critical review,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 686–699, 2014.
  2. C. Zhang, Y. Xu, Z. Y. Dong, and K. P. Wong, “Robust coordination of distributed generation and price-based demand response in microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4236–4247, 2017.
  3. S. H. Tindemans, V. Trovato, and G. Strbac, “Decentralized control of thermostatic loads for flexible demand response,” IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1685–1700, 2015.
  4. M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez, “Optimal participation of an electric vehicle aggregator in day-ahead energy and reserve markets,” IEEE transactions on power systems, vol. 31, no. 5, pp. 3506–3515, 2015.
  5. D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra, “Residential demand response using reinforcement learning,” in 2010 First IEEE international conference on smart grid communications.   IEEE, 2010, pp. 409–414.
  6. H. Li, Z. Wan, and H. He, “Constrained ev charging scheduling based on safe deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2427–2439, 2019.
  7. J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand response: A review of algorithms and modeling techniques,” Applied energy, vol. 235, pp. 1072–1089, 2019.
  8. B. Wang, Y. Li, W. Ming, and S. Wang, “Deep reinforcement learning method for demand response management of interruptible load,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3146–3155, 2020.
  9. Y. Shi and B. Zhang, “Multi-agent reinforcement learning in cournot games,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 3561–3566.
  10. P. Li, H. Wang, and B. Zhang, “A distributed online pricing strategy for demand response programs,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 350–360, 2019.
  11. K. Khezeli and E. Bitar, “Risk-sensitive learning and pricing for demand response,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6000–6007, 2017.
  12. S. Zheng, Y. Sun, B. Li, B. Qi, K. Shi, Y. Li, and X. Tu, “Incentive-based integrated demand response for multiple energy carriers considering behavioral coupling effect of consumers,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3231–3245, 2020.
  13. T. Başar, “Affine incentive schemes for stochastic systems with dynamic information,” SIAM Journal on Control and Optimization, vol. 22, no. 2, pp. 199–210, 1984.
  14. Y.-C. Ho, P. B. Luh, and G. J. Olsder, “A control-theoretic view on incentives,” Automatica, vol. 18, no. 2, pp. 167–179, 1982.
  15. D. Paccagnan, R. Chandan, B. L. Ferguson, and J. R. Marden, “Incentivizing efficient use of shared infrastructure: Optimal tolls in congestion games,” arXiv preprint arXiv:1911.09806, 2019.
  16. M. Peplinski and K. T. Sanders, “Residential electricity demand on caiso flex alert days: a case study of voluntary emergency demand response programs,” Environmental Research: Energy, vol. 1, no. 1, 2023.
  17. J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A survey on demand response programs in smart grids: Pricing methods and optimization algorithms,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 152–178, 2014.
  18. C. Chen, J. Wang, and S. Kishore, “A distributed direct load control approach for large-scale residential demand response,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2219–2228, 2014.
  19. C. Maheshwari, K. Kulkarni, M. Wu, and S. S. Sastry, “Inducing social optimality in games via adaptive incentive design,” in Conference on Decision and Control (CDC).   IEEE, 2022, pp. 2864–2869.
  20. L. J. Ratliff and T. Fiez, “Adaptive incentive design,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3871–3878, 2020.
  21. B. Liu, J. Li, Z. Yang, H.-T. Wai, M. Hong, Y. M. Nie, and Z. Wang, “Inducing equilibria via incentives: Simultaneous design-and-play finds global optima,” arXiv:2110.01212, 2021.
  22. N. Li, L. Chen, and S. H. Low, “Optimal demand response based on utility maximization in power networks,” in 2011 IEEE power and energy society general meeting.   IEEE, 2011, pp. 1–8.
  23. X. Yan, D. Wright, S. Kumar, G. Lee, and Y. Ozturk, “Enabling consumer behavior modification through real time energy pricing,” in 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops).   IEEE, 2015, pp. 311–316.
  24. W. Huang, N. Zhang, C. Kang, M. Li, and M. Huo, “From demand response to integrated demand response: Review and prospect of research and application,” Protection and Control of Modern Power Systems, vol. 4, pp. 1–13, 2019.
  25. M. Motoki, M. Umeda, M. Fripp, and A. Kuh, “Approximate dynamic programming for control of a residential water heater,” in 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8.
  26. Z. Liu, I. Liu, S. Low, and A. Wierman, “Pricing data center demand response,” ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 1, pp. 111–123, 2014.
  27. V. S. Borkar, “Stochastic approximation with two time scales,” Systems & Control Letters, vol. 29, no. 5, pp. 291–294, 1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167691197900153
  28. Y. Wan, T. Kober, and M. Densing, “Nonlinear inverse demand curves in electricity market modeling,” Energy Economics, vol. 107, 2022.
  29. Federal Energy Management Program, “Demand response and time-variable pricing programs: Western states,” U.S. Department of Energy, Tech. Rep., 2024.
  30. SmartGrid.gov, “Recovery act: Time based rate programs,” U.S. Department of Energy, Tech. Rep., 2024.
  31. G. R. Newsham and B. G. Bowker, “The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review,” Energy policy, vol. 38, no. 7, pp. 3289–3296, 2010.
  32. Y. Wang and L. Li, “Time-of-use electricity pricing for industrial customers: A survey of us utilities,” Applied Energy, vol. 149, pp. 89–103, 2015.
  33. F. Nielsen and G. Hadjeres, “Monte carlo information-geometric structures,” Geometric Structures of Information, pp. 69–103, 2019.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com