Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification results for conformally Kähler gravitational instantons (2310.13197v4)

Published 19 Oct 2023 in math.DG, math-ph, and math.MP

Abstract: We investigate the asymptotic geometry of Hermitian non-K\"ahler Ricci-flat metrics with finite $\int|Rm|2$ at infinity. Specifically, we prove: 1. Any such metric is asymptotic to an ALE, ALF-A, AF, skewed special Kasner, ALH* model at infinity. 2. Any Hermitian non-K\"ahler gravitational instanton with non-Euclidean volume growth is one of the following: the Kerr family, the Chen-Teo family, the Taub-bolt space, the reversed Taub-NUT space. This particularly confirms a conjecture by Aksteiner-Andersson. It includes the well-known Kerr family from general relativity. 3. All Hermitian non-K\"ahler gravitational instantons can be compactified to log del Pezzo surfaces. This explains a curious relation to compact Hermitian non-K\"ahler Einstein 4-manifolds. For a 4-dimensional Ricci-flat metric, being Hermitian non-K\"ahler is equivalent to being non-trivially conformally K\"ahler.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. S. Aksteiner and L. Andersson. Gravitational instantons and special geometry. arXiv:2112.11863. To appear in Journal of Differential Geometry.
  2. M. Atiyah and N. Hitchin. The Geometry and Dynamics of Magnetic Monopoles. Princeton University Press, 1988.
  3. A. Besse. Einstein manifolds. Classics in Mathematics. Springer-Verlag Berlin, 1987.
  4. C. Boyer and K. Galicki. Sasakian Geometry. Oxford Mathematical Monographs. Oxford Academic, 2007.
  5. O. Biquard and T. Ozuch. Instability of conformally Kähler, Einstein metrics. arXiv:2310.10109.
  6. G. Chen and J. Viaclovsky. Gravitational instantons with quadratic volume growth. arXiv:2110.06498. To appear in Journal of the London Mathematical Society.
  7. J. Demailly. Analytic Methods in Algebraic Geometry. Volume 1 of Surveys of Modern Mathematics. International Press, 2012.
  8. J. Demailly. Complex Analytic and Differential Geometry. Version of Thursday June 21, 2012. https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf.
  9. M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Modern Birkhäuser Classics. Birkhäuser Boston, 2007.
  10. M. Li. On 4-dimensional Ricci-flat ALE manifolds. arXiv:2304.01609.
  11. P. Molino. Riemannian Foliations. Volume 73 of Progress in Mathematics. Birkhäuser Boston, 1988.
  12. A. Naber and G. Tian. Geometric Structures of Collapsing Riemannian Manifolds I. arXiv:0804.2275.
  13. S. Sun and R. Zhang. Collapsing geometry of hyperkähler 4-manifolds. arXiv:2108.12991. To appear in Acta Mathematica.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com