Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Equivariance via Lie Algebra Convolutions (2310.13164v6)

Published 19 Oct 2023 in cs.LG and stat.ML

Abstract: Recently, the equivariance of models with respect to a group action has become an important topic of research in machine learning. Analysis of the built-in equivariance of existing neural network architectures, as well as the study of building models that explicitly "bake in" equivariance, have become significant research areas in their own right. However, imbuing an architecture with a specific group equivariance imposes a strong prior on the types of data transformations that the model expects to see. While strictly-equivariant models enforce symmetries, real-world data does not always conform to such strict equivariances. In such cases, the prior of strict equivariance can actually prove too strong and cause models to underperform. Therefore, in this work we study a closely related topic, that of almost equivariance. We provide a definition of almost equivariance and give a practical method for encoding almost equivariance in models by appealing to the Lie algebra of a Lie group. Specifically, we define Lie algebra convolutions and demonstrate that they offer several benefits over Lie group convolutions, including being well-defined for non-compact Lie groups having non-surjective exponential map. From there, we demonstrate connections between the notions of equivariance and isometry and those of almost equivariance and almost isometry. We prove two existence theorems, one showing the existence of almost isometries within bounded distance of isometries of a manifold, and another showing the converse for Hilbert spaces. We extend these theorems to prove the existence of almost equivariant manifold embeddings within bounded distance of fully equivariant embedding functions, subject to certain constraints on the group action and the function class. Finally, we demonstrate the validity of our approach by benchmarking against datasets in fully equivariant and almost equivariant settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 13(1):2453, 2022. doi: 10.1038/s41467-022-29939-5. URL https://doi.org/10.1038/s41467-022-29939-5.
  2. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, 2021.
  3. Group equivariant convolutional networks. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 2990–2999, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/cohenc16.html.
  4. A general theory of equivariant cnns on homogeneous spaces. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf.
  5. Automatic symmetry discovery with lie algebra convolutional network. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.  2503–2515. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/148148d62be67e0916a833931bd32b26-Paper.pdf.
  6. Ethan Eade. Lie groups for 2d and 3d transformations, May 2017. URL https://ethaneade.com/lie.pdf. Date Accessed: 2023-06-14.
  7. Introduction to representation theory, 2011.
  8. James Fickett. Approximate isometries on bounded sets with an application to measure theory. Studia Mathematica, 72(1):37–46, 1982. URL http://eudml.org/doc/218431.
  9. Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.  3165–3176. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/finzi20a.html.
  10. A practical method for constructing equivariant multilayer perceptrons for arbitrary matrix groups. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.  3318–3328. PMLR, 18–24 Jul 2021a. URL https://proceedings.mlr.press/v139/finzi21a.html.
  11. Residual pathway priors for soft equivariance constraints. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021b. URL https://openreview.net/forum?id=k505ekjMzww.
  12. Representation theory: A first course. Springer, 2004.
  13. Equivariance versus augmentation for spherical images. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.  7404–7421. PMLR, 17–23 Jul 2022a. URL https://proceedings.mlr.press/v162/gerken22a.html.
  14. Equivariance versus augmentation for spherical images. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.  7404–7421. PMLR, 17–23 Jul 2022b. URL https://proceedings.mlr.press/v162/gerken22a.html.
  15. The lie derivative for measuring learned equivariance. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=JL7Va5Vy15J.
  16. Chenlin Gu. Lecture notes on metric space and gromov-hausdorff distance, Sep 2017. URL https://chenlin-gu.github.io/notes/GromovHausdorff.pdf.
  17. Brian Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Springer International Publishing, Cham, 2015. ISBN 978-3-319-13467-3. doi: 10.1007/978-3-319-13467-3_1. URL https://doi.org/10.1007/978-3-319-13467-3.
  18. Learning to control pdes with differentiable physics. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=HyeSin4FPB.
  19. Lietransformer: Equivariant self-attention for lie groups. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.  4533–4543. PMLR, 18–24 Jul 2021a. URL https://proceedings.mlr.press/v139/hutchinson21a.html.
  20. Lietransformer: Equivariant self-attention for lie groups. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.  4533–4543. PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/v139/hutchinson21a.html.
  21. On approximate isometries. Bulletin of the American Mathematical Society, 51(4):288–292, 1945. doi: 10.1090/s0002-9904-1945-08337-2.
  22. SV Ivanov. Gromov–hausdorff convergence and volumes of manifolds. Algebra i Analiz, 9(5):65–83, 1997.
  23. Imre Risi Kondor. Group Theoretical Methods in Machine Learning. PhD thesis, USA, 2008. AAI3333377.
  24. On the generalization of equivariance and convolution in neural networks to the action of compact groups. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.  2747–2755. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/kondor18a.html.
  25. Roto-translation equivariant convolutional networks: Application to histopathology image analysis. CoRR, abs/2002.08725, 2020. URL https://arxiv.org/abs/2002.08725.
  26. Learning polynomial problems with sl(2)-equivariance, 2023. URL https://openreview.net/pdf?id=mRr53KWuf1.
  27. John M. Lee. Introduction to Smooth Manifolds. Springer New York, New York, NY, 2003. ISBN 978-0-387-21752-9. doi: 10.1007/978-0-387-21752-9. URL https://doi.org/10.1007/978-0-387-21752-9.
  28. John M. Lee. Introduction to Riemannian Manifolds. Springer International Publishing, Cham, 2018. ISBN 978-3-319-91755-9. doi: 10.1007/978-3-319-91755-9. URL https://doi.org/10.1007/978-3-319-91755-9.
  29. Equiformer: Equivariant graph attention transformer for 3d atomistic graphs. In International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=KwmPfARgOTD.
  30. Enabling equivariance for arbitrary lie groups. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  8183–8192, June 2022.
  31. Olivia Di Matteo. Understanding the haar measure. https://pennylane.ai/qml/demos/tutorial_haar_measure, 02 2021. Date Accessed: 2023-06-14.
  32. On equivariant isometric embeddings. Mathematische Zeitschrift, 173(2):119–133, 1980. doi: 10.1007/BF01159954. URL https://doi.org/10.1007/BF01159954.
  33. The group of isometries of a riemannian manifold. Annals of Mathematics, 40(2):400–416, 1939. ISSN 0003486X. URL http://www.jstor.org/stable/1968928.
  34. John Nash. C1 isometric imbeddings. Annals of Mathematics, 60(3):383–396, 1954. ISSN 0003486X. URL http://www.jstor.org/stable/1969840.
  35. Approximation-generalization trade-offs under (approximate) group equivariance, 2023.
  36. Chapter 2 - ulam stability of operators in normed spaces. In Themistocles M. Rassias, Janusz Brzdkek, Dorian Popa, Ioan Racsa, and Bing Xu (eds.), Ulam Stability of Operators, Mathematical Analysis and its Applications, pp.  33–68. Academic Press, 2018.
  37. Learning partial equivariances from data. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.  36466–36478. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/ec51d1fe4bbb754577da5e18eb54e6d1-Paper-Conference.pdf.
  38. E(n) equivariant graph neural networks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.  9323–9332. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/satorras21a.html.
  39. Stanislaw M. Ulam. A collection of mathematical problems. Interscience Publishers, 1960.
  40. Jussi Väisälä. Isometric approximation property in euclidean spaces. Israel Journal of Mathematics, 128(1):1–27, 2002. doi: 10.1007/BF02785416. URL https://doi.org/10.1007/BF02785416.
  41. Relaxing equivariance constraints with non-stationary continuous filters. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=5oEk8fvJxny.
  42. A general theory of correct, incorrect, and extrinsic equivariance. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=2FMJtNDLeE.
  43. Approximately equivariant networks for imperfectly symmetric dynamics. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.  23078–23091. PMLR, 17–23 Jul 2022a. URL https://proceedings.mlr.press/v162/wang22aa.html.
  44. Data augmentation vs. equivariant networks: A theory of generalization on dynamics forecasting, 2022b.
  45. General E(2)-Equivariant Steerable CNNs. In Conference on Neural Information Processing Systems (NeurIPS), 2019.
  46. Coordinate independent convolutional networks - isometry and gauge equivariant convolutions on riemannian manifolds. CoRR, abs/2106.06020, 2021. URL https://arxiv.org/abs/2106.06020.
  47. The Extension Problem for Contractions and Isometries, pp. 46–75. Springer Berlin Heidelberg, 1975.
  48. Deep scale-spaces: Equivariance over scale. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/f04cd7399b2b0128970efb6d20b5c551-Paper.pdf.
  49. Group equivariant subsampling. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.  5934–5946. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/2ea6241cf767c279cf1e80a790df1885-Paper.pdf.
  50. Towards a better understanding of reverse-complement equivariance for deep learning models in genomics. In David A. Knowles, Sara Mostafavi, and Su-In Lee (eds.), Proceedings of the 16th Machine Learning in Computational Biology meeting, volume 165 of Proceedings of Machine Learning Research, pp. 1–33. PMLR, 22–23 Nov 2022. URL https://proceedings.mlr.press/v165/zhou22a.html.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com