Efficient, Dynamic Locomotion through Step Placement with Straight Legs and Rolling Contacts (2310.13134v2)
Abstract: For humans, fast, efficient walking over flat ground represents the vast majority of locomotion that an individual experiences on a daily basis, and for an effective, real-world humanoid robot the same will likely be the case. In this work, we propose a locomotion controller for efficient walking over near-flat ground using a relatively simple, model-based controller that utilizes a novel combination of several interesting design features including an ALIP-based step adjustment strategy, stance leg length control as an alternative to center of mass height control, and rolling contact for heel-to-toe motion of the stance foot. We then present the results of this controller on our robot Nadia, both in simulation and on hardware. These results include validation of this controller's ability to perform fast, reliable forward walking at 0.75 m/s along with backwards walking, side-stepping, turning in place, and push recovery. We also present an efficiency comparison between the proposed control strategy and our baseline walking controller over three steady-state walking speeds. Lastly, we demonstrate some of the benefits of utilizing rolling contact in the stance foot, specifically the reduction of necessary positive and negative work throughout the stride.
- T. Koolen, S. Bertrand, G. Thomas, T. de Boer, T. Wu, J. Smith, J. Englsberger, and J. Pratt, “Design of a momentum-based control framework and application to the humanoid robot Atlas,” International Journal of Humanoid Robotics, vol. 13, no. 1, 2016.
- R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and J. Pratt, “Footstep planning for autonomous walking over rough terrain,” in 2019 IEEE-RAS 19th𝑡ℎ{}^{th}start_FLOATSUPERSCRIPT italic_t italic_h end_FLOATSUPERSCRIPT International Conference on Humanoid Robots (Humanoids). IEEE, 2019, pp. 9–16.
- M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, “The Simplest Walking Model: Stability, complexity, and scaling,” Journal of Biomechanical Engineering, vol. 120, no. 2, pp. 281–288, 1998.
- S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation,” in 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, 2001, pp. 239–246.
- S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” in 2003 IEEE International Conference on Robotics and Automation (ICRA), vol. 2. IEEE, 2003, pp. 1620–1626.
- J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward humanoid push recovery,” in 2006 6th𝑡ℎ{}^{th}start_FLOATSUPERSCRIPT italic_t italic_h end_FLOATSUPERSCRIPT IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2006, pp. 200–207.
- J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, and P. Neuhaus, “Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid,” The International Journal of Robotics Research, vol. 31, no. 10, pp. 1117–1133, 2012.
- J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional bipedal walking control using divergent component of motion,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 2600–2607.
- M. G. Boroujeni, E. Daneshman, L. Righetti, and M. Khadiv, “A unified framework for walking and running of bipedal robots,” in 2021 20th𝑡ℎ{}^{th}start_FLOATSUPERSCRIPT italic_t italic_h end_FLOATSUPERSCRIPT International Conference on Advanced Robotics (ICAR). IEEE, 2021, pp. 396–403.
- A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti, “Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid,” Autonomous Robots, vol. 40, pp. 473–491, 2016.
- S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot,” Autonomous Robots, vol. 40, pp. 429–455, 2016.
- S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim, “Optimization based controller design and implementation for the Atlas robot in the DARPA Robotics Challenge finals,” in 2015 IEEE-RAS 15th𝑡ℎ{}^{th}start_FLOATSUPERSCRIPT italic_t italic_h end_FLOATSUPERSCRIPT International Conference on Humanoid Robots (Humanoids). IEEE, 2015, pp. 1028–1035.
- E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dynamics of planar biped walkers,” IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 42–56, 2003.
- J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models, feedback control, and open problems of 3D bipedal robotic walking,” Automatica, vol. 50, no. 8, pp. 1955–1988, 2014.
- J. Reher, E. A. Cousineau, A. Hereid, C. M. Hubicki, and A. D. Ames, “Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 1794–1801.
- C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard, “Crocoddyl: An efficient and versatile framework for multi-contact optimal control,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 2536–2542.
- B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multicontact pattern generation with sequential convex approximations of the centroidal dynamics,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1661–1679, 2021.
- M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
- E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse, M. Taix, and N. Mansard, “Whole-body model predictive control for biped locomotion on a torque-controlled humanoid robot,” in 2022 IEEE-RAS 21st𝑠𝑡{}^{st}start_FLOATSUPERSCRIPT italic_s italic_t end_FLOATSUPERSCRIPT International Conference on Humanoid Robots (Humanoids). IEEE, 2022, pp. 638–644.
- M. Y. Galliker, N. Csomay-Shanklin, R. Grandia, A. J. Taylor, F. Farshidian, M. Hutter, and A. D. Ames, “Planar bipedal locomotion with nonlinear model predictive control: Online gait generation using whole-body dynamics,” in 2022 IEEE-RAS 21st𝑠𝑡{}^{st}start_FLOATSUPERSCRIPT italic_s italic_t end_FLOATSUPERSCRIPT International Conference on Humanoid Robots (Humanoids). IEEE, 2022, pp. 622–629.
- Y. Gong and J. Grizzle, “One-step ahead prediction of angular momentum about the contact point for control of bipedal locomotion: Validation in a LIP-inspired controller,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 2832–2838.
- R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt, “Straight-leg walking through underconstrained whole-body control,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 5747–5754.
- P. G. Adamczyk, S. H. Collins, and A. D. Kuo, “The advantages of a rolling foot in human walking,” Journal of Experimental Biology, vol. 209, no. 20, pp. 3953–3963, 2006.
- K. Narioka, S. Tsugawa, and K. Hosoda, “3d limit cycle walking of musculoskeletal humanoid robot with flat feet,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 4676–4681.
- R. Griffin, J. Foster, S. Fasano, B. Shrewsbury, and S. Bertrand, “Reachability aware capture regions with time adjustment and cross-over for step recovery,” in 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids). IEEE, 2023, pp. 1–8.
- G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-adaptive, ALIP-based bipedal locomotion controller via model predictive control and virtual constraints,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 6724–6731.
- J. K. Hodgins and M. H. Raibert, “Adjusting step length for rough terrain locomotion,” Dynamically Stable Legged Locomotion, p. 27, 1991.
- G. Ficht and S. Behnke, “Direct centroidal control for balanced humanoid locomotion,” in Climbing and Walking Robots Conference. Springer, 2022, pp. 242–255.
- R. J. Griffin, S. Bertrand, G. Wiedebach, A. Leonessa, and J. Pratt, “Capture point trajectories for reduced knee bend using step time optimization,” in 2017 IEEE-RAS 17th𝑡ℎ{}^{th}start_FLOATSUPERSCRIPT italic_t italic_h end_FLOATSUPERSCRIPT International Conference on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 25–30.
- Z. Huang, Z. Yu, X. Chen, Q. Li, L. Meng, C. Dong, X. Meng, W. Liao, and Q. Huang, “Knee-stretched walking with toe-off and heel-strike for a position-controlled humanoid robot based on model predictive control,” International Journal of Advanced Robotic Systems, vol. 18, no. 4, 2021.
- B. Park and J. Park, “Heel-strike and toe-off walking of humanoid robot using quadratic programming considering the foot contact states,” Robotics and Autonomous Systems, vol. 163, 2023.
- S. Dafarra, S. Bertrand, R. J. Griffin, G. Metta, D. Pucci, and J. Pratt, “Non-linear trajectory optimization for large step-ups: Application to the humanoid robot Atlas,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 3884–3891.
- J. Englsberger, T. Koolen, S. Bertrand, J. Pratt, C. Ott, and A. Albu-Schäffer, “Trajectory generation for continuous leg forces during double support and heel-to-toe shift based on divergent component of motion,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2014, pp. 4022–4029.
- A. H. Hansen, D. S. Childress, and E. H. Knox, “Roll-over shapes of human locomotor systems: effects of walking speed,” Clinical Biomechanics, vol. 19, no. 4, pp. 407–414, 2004.
- T. McGeer, “Passive dynamic walking,” The International Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990.
- Y.-M. Chen, G. Nelson, R. Griffin, M. Posa, and J. Pratt, “Integrable whole-body orientation coordinates for legged robots,” arXiv preprint arXiv:2210.08111, 2023.
- A. D. Kuo, J. M. Donelan, and A. Ruina, “Energetic consequences of walking like an inverted pendulum: step-to-step transitions,” Exercise and Sport Sciences Reviews, vol. 33, no. 2, pp. 88–97, 2005.
- M. Meinders, A. Gitter, and J. M. Czerniecki, “The role of ankle plantar flexor muscle work during walking.” Scandinavian Journal of Rehabilitation Medicine, vol. 30, no. 1, pp. 39–46, 1998.
- S. H. Collins, P. G. Adamczyk, and A. D. Kuo, “Dynamic arm swinging in human walking,” Proceedings of the Royal Society B: Biological Sciences, vol. 276, no. 1673, pp. 3679–3688, 2009.
- B. Mishra, D. Calvert, S. Bertrand, S. McCrory, R. Griffin, and H. E. Sevil, “GPU-accelerated rapid planar region extraction for dynamic behaviors on legged robots,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 8493–8499.