Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Propeller Damage Estimation and Adaptation to Fault Tolerant Control: Enhancing Quadrotor Resilience (2310.13091v2)

Published 19 Oct 2023 in cs.RO

Abstract: Aerial robots are required to remain operational even in the event of system disturbances, damages, or failures to ensure resilient and robust task completion and safety. One common failure case is propeller damage, which presents a significant challenge in both quantification and compensation. We propose a novel adaptive control scheme capable of detecting and compensating for multi-rotor propeller damages, ensuring safe and robust flight performances. Our control scheme includes an L1 adaptive controller for damage inference and compensation of single or dual propellers, with the capability to seamlessly transition to a fault-tolerant solution in case the damage becomes severe. We experimentally identify the conditions under which the L1 adaptive solution remains preferable over a fault-tolerant alternative. Experimental results validate the proposed approach, demonstrating its effectiveness in running the adaptive strategy in real time on a quadrotor even in case of damage to multiple propellers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. B. Mishra, D. Garg, P. Narang, and V. Mishra, “Drone-surveillance for search and rescue in natural disaster,” Computer Communications, vol. 156, pp. 1–10, 2020.
  2. J.-G. Ye, H.-T. Chen, and W.-J. Tsai, “Panorama generation based on aerial images,” in IEEE International Conference on Multimedia and Expo Workshops (ICMEW), 2018, pp. 1–6.
  3. G. K. Fourlas and G. C. Karras, “A survey on fault diagnosis and fault-tolerant control methods for unmanned aerial vehicles,” Machines, vol. 9, no. 9, p. 197, 2021.
  4. P. Lu and E.-J. van Kampen, “Active fault-tolerant control for quadrotors subjected to a complete rotor failure,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4698–4703.
  5. B. Ghalamchi and M. Mueller, “Vibration-based propeller fault diagnosis for multicopters,” in International Conference on Unmanned Aircraft Systems (ICUAS), 2018, pp. 1041–1047.
  6. S. P. Madruga, T. P. Nascimento, F. Holzapfel, and A. M. N. Lima, “Estimating the loss of effectiveness of uav actuators in the presence of aerodynamic effects,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1335–1342, 2023.
  7. R. C. Avram, X. Zhang, and J. Muse, “Quadrotor actuator fault diagnosis and accommodation using nonlinear adaptive estimators,” IEEE Transactions on Control Systems Technology, vol. 25, no. 6, pp. 2219–2226, 2017.
  8. A. S. Sanca, P. J. Alsina, and J. d. J. F. Cerqueira, “Dynamic modelling of a quadrotor aerial vehicle with nonlinear inputs,” in IEEE Latin American Robotic Symposium, 2008, pp. 143–148.
  9. S. S. Alex, A. E. Daniel, and B. Jayanand, “Reduced order extended kalman filter for state estimation of brushless dc motor,” in Sixth International Symposium on Embedded Computing and System Design (ISED), 2016, pp. 239–244.
  10. A. G. Rot, A. Hasan, and P. Manoonpong, “Robust actuator fault diagnosis algorithm for autonomous hexacopter uavs,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 682–687, 2020, 21st IFAC World Congress.
  11. Y. Zhong, Y. Zhang, W. Zhang, J. Zuo, and H. Zhan, “Robust actuator fault detection and diagnosis for a quadrotor uav with external disturbances,” IEEE Access, vol. 6, pp. 48 169–48 180, 2018.
  12. A. Abbaspour, S. Mokhtari, A. Sargolzaei, and K. K. Yen, “A survey on active fault-tolerant control systems,” Electronics, vol. 9, p. 1513, 2020.
  13. J. Yeom, G. Li, and G. Loianno, “Geometric fault-tolerant control of quadrotors in case of rotor failures: An attitude based comparative study,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.
  14. S. Sun, X. Wang, Q. Chu, and C. d. Visser, “Incremental nonlinear fault-tolerant control of a quadrotor with complete loss of two opposing rotors,” IEEE Transactions on Robotics, vol. 37, no. 1, pp. 116–130, 2021.
  15. Z. Wu, S. Cheng, K. A. Ackerman, A. Gahlawat, A. Lakshmanan, P. Zhao, and N. Hovakimyan, “L1 adaptive augmentation for geometric tracking control of quadrotors,” in IEEE International Conference on Robotics and Automation (ICRA), 2022, pp. 1329–1336.
  16. A. Saviolo, J. Frey, A. Rathod, M. Diehl, and G. Loianno, “Active learning of discrete-time dynamics for uncertainty-aware model predictive control,” arXiv preprint arXiv:2210.12583, 2022.
  17. F. Crocetti, J. Mao, A. Saviolo, G. Costante, and G. Loianno, “Gapt: Gaussian process toolkit for online regression with application to learning quadrotor dynamics,” in IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 11 308–11 314.
  18. A. Loquercio, A. Saviolo, and D. Scaramuzza, “Autotune: Controller tuning for high-speed flight,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4432–4439, 2022.
  19. M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers,” in IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 45–52.
  20. T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor uav on se(3),” in 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 5420–5425.
  21. M. Khammash, V. Vittal, and C. Pawloski, “Analysis of control performance for stability robustness of power systems,” IEEE Transactions on Power Systems, vol. 9, no. 4, pp. 1861–1867, 1994.
  22. M. Watterson and V. Kumar, “Control of quadrotors using the hopf fibration on so(3),” in Robotics Research: The 18th International Symposium ISRR.   Springer, 2019, pp. 199–215.
  23. G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and imu,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 404–411, April 2017.
  24. K. Huang, R. Rana, G. Shi, A. Spitzer, and B. Boots, “Datt: Deep adaptive trajectory tracking for quadrotor control,” in 7th Annual Conference on Robot Learning, 2023.
  25. J. Mao, S. Nogar, C. M. Kroninger, and G. Loianno, “Robust active visual perching with quadrotors on inclined surfaces,” IEEE Transactions on Robotics, vol. 39, no. 3, pp. 1836–1852, 2023.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com