Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature Aligned Simplex Gradient: Principled Sample Set Construction For Numerical Differentiation (2310.12712v1)

Published 19 Oct 2023 in math.NA, cs.NA, and math.OC

Abstract: The simplex gradient, a popular numerical differentiation method due to its flexibility, lacks a principled method by which to construct the sample set, specifically the location of function evaluations. Such evaluations, especially from real-world systems, are often noisy and expensive to obtain, making it essential that each evaluation is carefully chosen to reduce cost and increase accuracy. This paper introduces the curvature aligned simplex gradient (CASG), which provably selects the optimal sample set under a mean squared error objective. As CASG requires function-dependent information often not available in practice, we additionally introduce a framework which exploits a history of function evaluations often present in practical applications. Our numerical results, focusing on applications in sensitivity analysis and derivative free optimization, show that our methodology significantly outperforms or matches the performance of the benchmark gradient estimator given by forward differences (FD) which is given exact function-dependent information that is not available in practice. Furthermore, our methodology is comparable to the performance of central differences (CD) that requires twice the number of function evaluations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.