On the positivity of the hypergeometric Veneziano amplitude (2310.12207v3)
Abstract: Recently, an infinite family of one-parameter generalisations of the Veneziano amplitude were bootstrapped using as input assumptions an integer mass spectrum, crossing symmetry, high-energy boundedness, and exchange of finite spins. This new result was dubbed the hypergeometric Veneziano amplitude, with a real-valued deformation parameter r. For concreteness we work in a setup where the lowest-mass state is a tachyon of mass $m2_0=-1$ and using the partial-wave decomposition and the positivity of said decomposition's coefficients we are able to bound the deformation parameter to $r \geq 0$ and, also, to obtain an upper bound on the number of spacetime dimensions $D \leq 26$, which is the critical dimension of bosonic string theory.
- M. Kruczenski, J. Penedones, and B. C. van Rees, “Snowmass White Paper: S-matrix Bootstrap,” 2203.02421.
- G. Veneziano, “Construction of a crossing - symmetric, Regge behaved amplitude for linearly rising trajectories,” Nuovo Cim. A 57 (1968) 190–197.
- X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, “Causality Constraints on Corrections to the Graviton Three-Point Coupling,” JHEP 02 (2016) 020, 1407.5597.
- K. Häring and A. Zhiboedov, “Gravitational Regge bounds,” 2202.08280.
- P. Maity, “Positivity of the Veneziano amplitude in D = 4,” JHEP 04 (2022) 064, 2110.01578.
- N. Arkani-Hamed, L. Eberhardt, Y.-t. Huang, and S. Mizera, “On unitarity of tree-level string amplitudes,” JHEP 02 (2022) 197, 2201.11575.
- D. D. Coon, “Uniqueness of the veneziano representation,” Phys. Lett. B 29 (1969) 669–672.
- M. Baker and D. D. Coon, “Dual resonance theory with nonlinear trajectories,” Phys. Rev. D 2 (1970) 2349–2358.
- D. D. Coon, U. P. Sukhatme, and J. Tran Thanh Van, “DUALITY AND PROTON PROTON SCATTERING AT ALL ANGLES,” Phys. Lett. B 45 (1973) 287–291.
- C. B. Jepsen, “Cutting the Coon amplitude,” JHEP 06 (2023) 114, 2303.02149.
- R. Bhardwaj, S. De, M. Spradlin, and A. Volovich, “On unitarity of the Coon amplitude,” JHEP 08 (2023) 082, 2212.00764.
- Y. Li and H.-Y. Sun, “Towards α′superscript𝛼′\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT-finiteness: q𝑞qitalic_q-deformed open string amplitude,” 2307.13117.
- F. Figueroa and P. Tourkine, “Unitarity and Low Energy Expansion of the Coon Amplitude,” Phys. Rev. Lett. 129 (2022), no. 12 121602, 2201.12331.
- J. Chakravarty, P. Maity, and A. Mishra, “On the positivity of Coon amplitude in D = 4,” JHEP 10 (2022) 043, 2208.02735.
- N. Geiser and L. W. Lindwasser, “Properties of infinite product amplitudes: Veneziano, Virasoro, and Coon,” JHEP 12 (2022) 112, 2207.08855.
- R. Bhardwaj and S. De, “Dual resonant amplitudes from Drinfel’d twists,” 2309.07214.
- S. Caron-Huot, Z. Komargodski, A. Sever, and A. Zhiboedov, “Strings from Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude,” JHEP 10 (2017) 026, 1607.04253.
- J. Maldacena and G. N. Remmen, “Accumulation-point amplitudes in string theory,” JHEP 08 (2022) 152, 2207.06426.
- N. Geiser and L. W. Lindwasser, “Generalized Veneziano and Virasoro amplitudes,” JHEP 04 (2023) 031, 2210.14920.
- C. Cheung and G. N. Remmen, “Veneziano variations: how unique are string amplitudes?,” JHEP 01 (2023) 122, 2210.12163.
- C. Cheung and G. N. Remmen, “Bespoke Dual Resonance,” 2308.03833.
- C. Cheung and G. N. Remmen, “Stringy dynamics from an amplitudes bootstrap,” Phys. Rev. D 108 (2023), no. 2 026011, 2302.12263.
- H. Kawai, D. C. Lewellen, and S. H. H. Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,” Nucl. Phys. B 269 (1986) 1–23.