Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grounded and Well-rounded: A Methodological Approach to the Study of Cross-modal and Cross-lingual Grounding (2310.11938v1)

Published 18 Oct 2023 in cs.CL

Abstract: Grounding has been argued to be a crucial component towards the development of more complete and truly semantically competent artificial intelligence systems. Literature has divided into two camps: While some argue that grounding allows for qualitatively different generalizations, others believe it can be compensated by mono-modal data quantity. Limited empirical evidence has emerged for or against either position, which we argue is due to the methodological challenges that come with studying grounding and its effects on NLP systems. In this paper, we establish a methodological framework for studying what the effects are - if any - of providing models with richer input sources than text-only. The crux of it lies in the construction of comparable samples of populations of models trained on different input modalities, so that we can tease apart the qualitative effects of different input sources from quantifiable model performances. Experiments using this framework reveal qualitative differences in model behavior between cross-modally grounded, cross-lingually grounded, and ungrounded models, which we measure both at a global dataset level as well as for specific word representations, depending on how concrete their semantics is.

Summary

We haven't generated a summary for this paper yet.