Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FusionU-Net: U-Net with Enhanced Skip Connection for Pathology Image Segmentation (2310.10951v1)

Published 17 Oct 2023 in eess.IV and cs.CV

Abstract: In recent years, U-Net and its variants have been widely used in pathology image segmentation tasks. One of the key designs of U-Net is the use of skip connections between the encoder and decoder, which helps to recover detailed information after upsampling. While most variations of U-Net adopt the original skip connection design, there is semantic gap between the encoder and decoder that can negatively impact model performance. Therefore, it is important to reduce this semantic gap before conducting skip connection. To address this issue, we propose a new segmentation network called FusionU-Net, which is based on U-Net structure and incorporates a fusion module to exchange information between different skip connections to reduce semantic gaps. Unlike the other fusion modules in existing networks, ours is based on a two-round fusion design that fully considers the local relevance between adjacent encoder layer outputs and the need for bi-directional information exchange across multiple layers. We conducted extensive experiments on multiple pathology image datasets to evaluate our model and found that FusionU-Net achieves better performance compared to other competing methods. We argue our fusion module is more effective than the designs of existing networks, and it could be easily embedded into other networks to further enhance the model performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.