Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting Physical Causality from Measurements to Detect and Localize False Data Injection Attacks (2310.10666v1)

Published 21 Sep 2023 in cs.CR and cs.LG

Abstract: False Data Injection Attack (FDIA) has become a growing concern in modern cyber-physical power systems. Most existing FDIA detection techniques project the raw measurement data into a high-dimensional latent space to separate normal and attacked samples. These approaches focus more on the statistical correlations of data values and are therefore susceptible to data distribution drifts induced by changes in system operating points or changes in FDIA types and strengths, especially for FDIA localization tasks. Causal inference, on the other hand, extracts the causality behind the coordinated fluctuations of different measurements. The causality patterns are determined by fundamental physical laws such as Ohm's Law and Kirchhoff's Law. They are sensitive to the violation of physical laws caused by FDIA, but tend to remain stable with the drift of system operating points. Leveraging this advantage, this paper proposes a joint FDIA detection and localization framework based on causal inference and the Graph Attention Network (GAT) to identify the attacked system nodes. The proposed framework consists of two levels. The lower level uses the X-learner algorithm to estimate the causality strength between measurements and generate Measurement Causality Graphs (MCGs). The upper level then applies a GAT to identify the anomaly patterns in the MCGs. Since the extracted causality patterns are intrinsically related to the measurements, it is easier for the upper level to figure out the attacked nodes than the existing FDIA localization approaches. The performance of the proposed framework is evaluated on the IEEE 39-bus system. Experimental results show that the causality-based FDIA detection and localization mechanism is highly interpretable and robust.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015 ukraine blackout: Implications for false data injection attacks,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3317–3318, jul 2017.
  2. K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and attacks including false data injection attack in smart grid using kalman filter,” IEEE Transactions on Control of Network Systems, vol. 1, no. 4, pp. 370–379, dec 2014.
  3. M. N. Kurt, Y. Yilmaz, and X. Wang, “Distributed quickest detection of cyber-attacks in smart grid,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 8, pp. 2015–2030, aug 2018.
  4. X. Wang, X. Luo, Y. Zhang, and X. Guan, “Detection and isolation of false data injection attacks in smart grids via nonlinear interval observer,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6498–6512, 2019.
  5. R. Moslemi, A. Mesbahi, and J. M. Velni, “A fast, decentralized covariance selection-based approach to detect cyber attacks in smart grids,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4930–4941, sep 2018.
  6. B. Tang, J. Yan, S. Kay, and H. He, “Detection of false data injection attacks in smart grid under colored gaussian noise,” in 2016 IEEE Conference on Communications and Network Security (CNS).   IEEE, oct 2016.
  7. M. Ozay, I. Esnaola, F. T. Yarman-Vural, S. R. Kulkarni, and H. V. Poor, “Machine learning methods for attack detection in the smart grid,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, pp. 1773–1786, 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:12237987
  8. M. R. Habibi, H. R. Baghaee, T. Dragicevic, and F. Blaabjerg, “Detection of false data injection cyber-attacks in dc microgrids based on recurrent neural networks,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 5, pp. 5294–5310, 2021.
  9. E. Naderi and A. Asrari, “A deep learning framework to identify remedial action schemes against false data injection cyberattacks targeting smart power systems,” IEEE Transactions on Industrial Informatics, pp. 1–12, 2023.
  10. F. Almutairy, R. Shadid, and S. Wshah, “Identification and correction of false data injection attacks against ac state estimation using deep learning,” in Proc. IEEE PESGM, Montreal, Canada, 2020, pp. 1–5.
  11. Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2505–2516, sep 2017.
  12. G. Zhang, J. Li, O. Bamisile, D. Cai, W. Hu, and Q. Huang, “Spatio-temporal correlation-based false data injection attack detection using deep convolutional neural network,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 750–761, 2022.
  13. X. Luo, Y. Li, X. Wang, and X. Guan, “Interval observer-based detection and localization against false data injection attack in smart grids,” IEEE Internet of Things Journal, vol. 8, no. 2, pp. 657–671, jan 2021.
  14. A. Jevtic, F. Zhang, Q. Li, and M. Ilic, “Physics- and learning-based detection and localization of false data injections in automatic generation control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 702–707, 2018.
  15. S. Wang, S. Bi, and Y.-J. A. Zhang, “Locational detection of the false data injection attack in a smart grid: A multilabel classification approach,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8218–8227, sep 2020.
  16. J. Zhu, W. Meng, M. Sun, J. Yang, and Z. Song, “FLLF: A fast-lightweight location detection framework for false data injection attacks in smart grids,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  17. O. Boyaci, M. R. Narimani, K. R. Davis, M. Ismail, T. J. Overbye, and E. Serpedin, “Joint detection and localization of stealth false data injection attacks in smart grids using graph neural networks,” IEEE Transactions on Smart Grid, vol. 13, no. 1, pp. 807–819, jan 2022.
  18. S. Peng, Z. Zhang, R. Deng, and P. Cheng, “Localizing false data injection attacks in smart grid: A spectrum-based neural network approach,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  19. J. Pearl, “The seven tools of causal inference, with reflections on machine learning,” Communications of the ACM, vol. 62, no. 3, pp. 54–60, 2019.
  20. B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio, “Toward causal representation learning,” Proceedings of the IEEE, vol. 109, no. 5, pp. 612–634, 2021.
  21. J. Pearl and G. Shafer, “Probabilistic reasoning in intelligent systems: Networks of plausible inference,” Synthese-Dordrecht, vol. 104, no. 1, p. 161, 1995.
  22. D. B. Rubin, “Causal inference using potential outcomes: Design, modeling, decisions,” Journal of the American Statistical Association, vol. 100, no. 469, pp. 322–331, 2005.
  23. S. R. Künzel, J. S. Sekhon, P. J. Bickel, and B. Yu, “Metalearners for estimating heterogeneous treatment effects using machine learning,” Proc. Nat. Acad. Sci., vol. 116, no. 10, pp. 4156–4165, 2019.
  24. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.
  25. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  26. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
  27. H. Zou and T. Hastie, “Regularization and Variable Selection Via the Elastic Net,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 67, no. 2, pp. 301–320, 2005.

Summary

We haven't generated a summary for this paper yet.