Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certainty In, Certainty Out: REVQCs for Quantum Machine Learning (2310.10629v1)

Published 16 Oct 2023 in cs.LG and quant-ph

Abstract: The field of Quantum Machine Learning (QML) has emerged recently in the hopes of finding new machine learning protocols or exponential speedups for classical ones. Apart from problems with vanishing gradients and efficient encoding methods, these speedups are hard to find because the sampling nature of quantum computers promotes either simulating computations classically or running them many times on quantum computers in order to use approximate expectation values in gradient calculations. In this paper, we make a case for setting high single-sample accuracy as a primary goal. We discuss the statistical theory which enables highly accurate and precise sample inference, and propose a method of reversed training towards this end. We show the effectiveness of this training method by assessing several effective variational quantum circuits (VQCs), trained in both the standard and reversed directions, on random binary subsets of the MNIST and MNIST Fashion datasets, on which our method provides an increase of $10-15\%$ in single-sample inference accuracy.

Summary

We haven't generated a summary for this paper yet.