Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding an Acquisition Function Family for Bayesian Optimization (2310.10614v1)

Published 16 Oct 2023 in stat.CO

Abstract: Bayesian optimization (BO) developed as an approach for the efficient optimization of expensive black-box functions without gradient information. A typical BO paper introduces a new approach and compares it to some alternatives on simulated and possibly real examples to show its efficacy. Yet on a different example, this new algorithm might not be as effective as the alternatives. This paper looks at a broader family of approaches to explain the strengths and weaknesses of algorithms in the family, with guidance on what choices might work best on different classes of problems.

Summary

We haven't generated a summary for this paper yet.