Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DPZero: Private Fine-Tuning of Language Models without Backpropagation (2310.09639v3)

Published 14 Oct 2023 in cs.LG, cs.CR, math.OC, and stat.ML

Abstract: The widespread practice of fine-tuning LLMs on domain-specific data faces two major challenges in memory and privacy. First, as the size of LLMs continues to grow, the memory demands of gradient-based training methods via backpropagation become prohibitively high. Second, given the tendency of LLMs to memorize training data, it is important to protect potentially sensitive information in the fine-tuning data from being regurgitated. Zeroth-order methods, which rely solely on forward passes, substantially reduce memory consumption during training. However, directly combining them with standard differentially private gradient descent suffers more as model size grows. To bridge this gap, we introduce DPZero, a novel private zeroth-order algorithm with nearly dimension-independent rates. The memory efficiency of DPZero is demonstrated in privately fine-tuning RoBERTa and OPT on several downstream tasks. Our code is available at https://github.com/Liang137/DPZero.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com