Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Prediction of Full-Ocean Depth SSP by Hierarchical LSTM: An Experimental Result (2310.09522v1)

Published 14 Oct 2023 in cs.SD, eess.AS, and eess.SP

Abstract: SSP distribution is an important parameter for underwater positioning, navigation and timing (PNT) because it affects the propagation mode of underwater acoustic signals. To accurate predict future sound speed distribution, we propose a hierarchical long short--term memory (H--LSTM) neural network for future sound speed prediction, which explore the distribution pattern of sound velocity in the time dimension. To verify the feasibility and effectiveness, we conducted both simulations and real experiments. The ocean experiment was held in the South China Sea in April, 2023. Results show that the accuracy of the proposed method outperforms the state--of--the--art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Z. Xu, “Research on the calibration method of underwater sound velocity profiler,” Wireless Internet Technology, vol. 2, p. 50, 2012.
  2. Z. Yuan, Z. Zhao, and X. Guo, “Technical improvement of ctd profiler,” Journal of Ocean Technology, vol. 28, no. 4, pp. 11–13, 2009.
  3. Y. Wang, W. Cai, D. Weng, and Q. Sheng, “A sbe-19plus based real-time monitoring system of ctd data,” in OCEANS 2014 - TAIPEI, 2014, pp. 1–4.
  4. “Ctd products of sea-sun-tech company,” https://www.sea-sun-tech.com/product/multiparameter-probe-ctd-115-memory/, 2020.
  5. “Xtd/xctd, longeron marine,” http://www.haiyanec.com/lxwm1/, 2023.
  6. W. Huang, J. Lu, S. Li, T. Xu, J. Wang, and H. Zhang, “Fast estimation of full depth sound speed profile based on partial prior information,” in 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), 2023, pp. 479–484.
  7. W. Munk and C. Wunsch, “Ocean acoustic tomography: A scheme for large scale monitoring,” Deep Sea Research Part A. Oceanographic Research Papers, vol. 26, no. 2, pp. 123–161, 1979.
  8. W. Munk and C. Wunsch, “Ocean acoustic tomography: Rays and modes,” Reviews of Geophysics, vol. 21, no. 4, pp. 777–793, 1983.
  9. A. Tolstoy, O. Diachok, and L. Frazer, “Acoustic tomography via matched field processing,” The Journal of the Acoustical Society of America, vol. 89, no. 3, pp. 1119–1127, 1991.
  10. Y. Shen, Y. Ma, Q. Tu, and X. Jiang, “Feasibility of description of the sound speed profile in shallow water via empirical orthogonal functions (eof),” Journal of Applied Acoustics, vol. 2, pp. 21–25, 1999.
  11. S. Jain and M. Ali, “Estimation of sound speed profiles using artificial neural networks,” IEEE Geoscience and Remote Sensing Letters, vol. 3, no. 4, pp. 467–470, 2006.
  12. M. Han, L. Wei, and Y. Zhou, “An improved empirical orthogonal function (eof) on the forecast of ocean sound speed profile,” Marine Sciences, vol. 33, no. 1, pp. 30–33, 2009.
  13. M. Bianco and P. Gerstoft, “Compressive acoustic sound speed profile estimation,” The Journal of the Acoustical Society of America, vol. 139, pp. EL90–EL94, 2016.
  14. W. Huang, M. Liu, D. Li, F. Yin, H. Chen, J. Zhou, and H. Xu, “Collaborating ray tracing and ai model for auv-assisted 3-d underwater sound-speed inversion,” IEEE Journal of Oceanic Engineering, vol. 46, pp. 1372–1390, 2021.
  15. Q. Li, H. Li, S. Cao, X. Yan, and Z. Ma, “Inversion of the full-depth sound speed profile based on remote sensing data and surface sound speed,” Acta Oceano-logica Sinica, vol. 44, no. 12, pp. 84–94, 2022.
  16. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  17. S. SEA-BIRD, “Sbe 911plus ctd,” https://www.seabird.com/sbe-911plus-ctd/product?id=60761421595, 2023.
  18. E. Haiyan, “Hylmt-xctd,” http://www.haiyanec.com/hlgcsb/358, 2023.
  19. C. Zhang, Z. Liu, S. Lu, H. Li, C. Sun, and X. Wu, “User manual (3rd version) of gdcsm argo gridded data set,” China Argo Real-time Data Center, p. 19, 2021.
  20. F. Liu, T. Ji, and Q. Zhang, “Sound speed profile inversion based on mode signal and polynomial fitting,” Acta Armamentarii, vol. 40, no. 11, pp. 2283–2295, 2019.
  21. X. Yu, T. Xu, and J. Wang, “Sound velocity profile prediction method based on rbf neural network,” in China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume III, 2020, pp. 475–487.
Citations (2)

Summary

We haven't generated a summary for this paper yet.