Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast-DiM: Towards Fast Diffusion Morphs (2310.09484v3)

Published 14 Oct 2023 in cs.CV and cs.LG

Abstract: Diffusion Morphs (DiM) are a recent state-of-the-art method for creating high quality face morphs; however, they require a high number of network function evaluations (NFE) to create the morphs. We propose a new DiM pipeline, Fast-DiM, which can create morphs of a similar quality but with fewer NFE. We investigate the ODE solvers used to solve the Probability Flow ODE and the impact they have on the the creation of face morphs. Additionally, we employ an alternative method for encoding images into the latent space of the Diffusion model by solving the Probability Flow ODE as time runs forwards. Our experiments show that we can reduce the NFE by upwards of 85% in the encoding process while experiencing only 1.6\% reduction in Mated Morph Presentation Match Rate (MMPMR). Likewise, we showed we could cut NFE, in the sampling process, in half with only a maximal reduction of 0.23% in MMPMR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Z. Blasingame and C. Liu, “Leveraging adversarial learning for the detection of morphing attacks,” 2021 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8, 2021.
  2. H. Zhang, S. Venkatesh, R. Ramachandra, K. Raja, N. Damer, and C. Busch, “Mipgan—generating strong and high quality morphing attacks using identity prior driven gan,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 3, pp. 365–383, 2021.
  3. L. DeBruine and B. Jones, “Face Research Lab London Set,” 5 2017. [Online]. Available: https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666
  4. Z. W. Blasingame and C. Liu, “Leveraging diffusion for strong and high quality face morphing attacks,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 6, no. 1, pp. 118–131, 2024.
  5. M. Huber, F. Boutros, A. T. Luu, K. Raja, R. Ramachandra, N. Damer, P. C. Neto, T. Gonçalves, A. F. Sequeira, J. S. Cardoso, J. Tremoço, M. Lourenço, S. Serra, E. Cermeño, M. Ivanovska, B. Batagelj, A. Kronovšek, P. Peer, and V. Štruc, “Syn-mad 2022: Competition on face morphing attack detection based on privacy-aware synthetic training data,” in 2022 IEEE International Joint Conference on Biometrics (IJCB), 2022, pp. 1–10.
  6. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” in International Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=PxTIG12RRHS
  7. K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn, “Diffusion autoencoders: Toward a meaningful and decodable representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 10 619–10 629.
  8. F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper, “Elasticface: Elastic margin loss for deep face recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2022, pp. 1578–1587.
  9. T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4396–4405.
  10. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690–4699.
  11. M. Kim, A. K. Jain, and X. Liu, “Adaface: Quality adaptive margin for face recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
  12. U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. N. J. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R. Breithaupt, R. Ramachandra, and C. Busch, “Biometric systems under morphing attacks: Assessment of morphing techniques and vulnerability reporting,” in 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), 2017, pp. 1–7.
  13. M. Ferrara, A. Franco, D. Maltoni, and C. Busch, “Morphing attack potential,” in 2022 International Workshop on Biometrics and Forensics (IWBF), 2022, pp. 1–6.
  14. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
  15. C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models,” 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.