Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
29 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
210 tokens/sec
2000 character limit reached

Unveiling UV/IR Mixing via Symmetry Defects: A View from Topological Entanglement Entropy (2310.09425v4)

Published 13 Oct 2023 in cond-mat.str-el and quant-ph

Abstract: Some topological lattice models in two spatial dimensions exhibit intricate lattice size dependence in their ground state degeneracy (GSD). This and other features such as the position-dependent anyonic excitations are manifestations of UV/IR mixing. In the first part of this paper, we perform an exact calculation of the topological entanglement entropy (TEE) for a specific model, the rank-2 toric code. This analysis includes both contractible and non-contractible boundaries, with the minimum entropy states identified specifically for non-contractible boundaries. Our results show that TEE for a contractible boundary remains independent of lattice size, whereas TEE for non-contractible boundaries, similarly to the GSD, shows intricate lattice-size dependence. In the latter part of the paper we focus on the fact that the rank-2 toric code is an example of a translation symmetry-enriched topological phase, and show that viewing distinct lattice size as a consequence of different translation symmetry defects can explain both our TEE results and the GSD of the rank-2 toric code. Our work establishes the translation symmetry defect framework as a robust description of the UV/IR mixing in topological lattice models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford University Press, 2007).
  2. A. Kitaev, Annals of Physics 303, 2 (2003).
  3. X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
  4. S.-P. Kou and X.-G. Wen, Phys. Rev. B 80, 224406 (2009).
  5. A. M. Essin and M. Hermele, Phys. Rev. B 87, 104406 (2013).
  6. A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013).
  7. Y.-M. Lu and A. Vishwanath, Phys. Rev. B 93, 155121 (2016).
  8. X. Chen, Reviews in Physics 2, 3 (2017).
  9. X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003).
  10. Y.-Z. You and X.-G. Wen, Phys. Rev. B 86, 161107 (2012).
  11. S. D. Pace and X.-G. Wen, Phys. Rev. B 106, 045145 (2022).
  12. G. Delfino, C. Chamon,  and Y. You, “2d fractons from gauging exponential symmetries,”  (2023b), arXiv:2306.17121 [cond-mat.str-el] .
  13. H. Ebisu, Phys. Rev. B 107, 125154 (2023a).
  14. H. Ebisu, “Entanglement entropy of higher rank topological phases,”  (2023b), arXiv:2302.11468 [cond-mat.str-el] .
  15. M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
  16. A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
  17. D. Bulmash and M. Barkeshli, Phys. Rev. B 97, 235112 (2018).
  18. V. Turaev, “Homotopy field theory in dimension 3 and crossed group-categories,”  (2000), arXiv:math/0005291 [math.GT] .
  19. See the supplemental material for details.
  20. R. Thorngren and D. V. Else, Phys. Rev. X 8, 011040 (2018).
  21. L. Zou and J. Haah, Phys. Rev. B 94, 075151 (2016).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.