Emergence of noise-induced barren plateaus in arbitrary layered noise models (2310.08405v3)
Abstract: In variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem. The barren plateau phenomenon manifests as an exponentially vanishing dependence of the cost function with respect to the variational parameters, and thus hampers the optimization process. We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model. Previous results have shown the existence of noise-induced barren plateaus in the presence of local Pauli noise [arXiv:2007.14384]. We extend these results analytically to arbitrary completely-positive trace preserving maps in two cases: 1) when a parameter-shift rule holds, 2) when the parameterized quantum circuit at each layer forms a unitary $2$-design. The second example shows how highly expressive unitaries give rise not only to standard barren plateaus [arXiv:1803.11173], but also to noise-induced ones. In the second part of the paper, we study numerically the emergence of noise-induced barren plateaus in QAOA circuits focusing on the case of MaxCut problems on $d$-regular graphs and amplitude damping noise.
- “Noise-induced barren plateaus in variational quantum algorithms”. Nature Communications 12, 6961 (2021).
- “Barren plateaus in quantum neural network training landscapes”. Nature Communications 9, 4812 (2018).
- P. W. Shor. “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”. SIAM Journal on Computing 26, 1484–1509 (1997).
- C. Gidney and M. Ekerå. “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits”. Quantum 5, 433 (2021).
- B. M. Terhal. “Quantum error correction for quantum memories”. Rev. Mod. Phys. 87, 307–346 (2015).
- “Surface codes: Towards practical large-scale quantum computation”. Phys. Rev. A 86, 032324 (2012).
- “Topological quantum memory”. Journal of Mathematical Physics 43, 4452–4505 (2002).
- Google Quantum AI. “Suppressing quantum errors by scaling a surface code logical qubit”. Nature 614, 676–681 (2023).
- “Realizing repeated quantum error correction in a distance-three surface code”. Nature 605, 669–674 (2022).
- “Logical-qubit operations in an error-detecting surface code”. Nature Physics 18, 80–86 (2022).
- J. Preskill. “Quantum Computing in the NISQ era and beyond”. Quantum 2, 79 (2018).
- “Variational quantum algorithms”. Nature Reviews Physics 3, 625–644 (2021).
- “A variational eigenvalue solver on a photonic quantum processor”. Nature Communications 5, 4213 (2014).
- “The variational quantum eigensolver: A review of methods and best practices”. Physics Reports 986, 1–128 (2022).
- “A Quantum Approximate Optimization Algorithm” (2014). arXiv:1411.4028.
- “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices”. Phys. Rev. X 10, 021067 (2020).
- “From the quantum approximate optimization algorithm to a quantum alternating operator ansatz”. Algorithms12 (2019).
- “Variational algorithms for linear algebra”. Science Bulletin 66, 2181–2188 (2021).
- “Variational Quantum Linear Solver” (2019). arXiv:1909.05820.
- “Solving nonlinear differential equations with differentiable quantum circuits”. Phys. Rev. A 103, 052416 (2021).
- “Variational quantum evolution equation solver”. Scientific Reports 12, 10817 (2022).
- “Variational quantum simulations of stochastic differential equations”. Phys. Rev. A 103, 052425 (2021).
- “Quantum circuit learning”. Phys. Rev. A 98, 032309 (2018).
- “The power of quantum neural networks”. Nature Computational Science 1, 403–409 (2021).
- “Scalable noise estimation with random unitary operators”. Journal of Optics B: Quantum and Semiclassical Optics 7, S347 (2005).
- “Exact and approximate unitary 2-designs and their application to fidelity estimation”. Phys. Rev. A 80, 012304 (2009).
- “Connecting ansatz expressibility to gradient magnitudes and barren plateaus”. PRX Quantum 3, 010313 (2022).
- L. Friedrich and J. Maziero. “Quantum neural network cost function concentration dependency on the parametrization expressivity”. Scientific Reports 13, 9978 (2023).
- “Diagnosing Barren Plateaus with Tools from Quantum Optimal Control”. Quantum 6, 824 (2022).
- “Entanglement-induced barren plateaus”. PRX Quantum 2, 040316 (2021).
- C. Zhao and X.-S. Gao. “Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus”. Quantum 5, 466 (2021).
- “Barren plateaus in quantum tensor network optimization”. Quantum 7, 974 (2023).
- “Effect of barren plateaus on gradient-free optimization”. Quantum 5, 558 (2021).
- “Equivalence of quantum barren plateaus to cost concentration and narrow gorges”. Quantum Science and Technology 7, 045015 (2022).
- D. S. França and R. García-Patrón. “Limitations of optimization algorithms on noisy quantum devices”. Nature Physics 17, 1221–1227 (2021).
- “Limitations of variational quantum algorithms: A quantum optimal transport approach”. PRX Quantum 4, 010309 (2023).
- “Robustness of quantum reinforcement learning under hardware errors” (2022). arXiv:2212.09431.
- “Effects of quantum noise on quantum approximate optimization algorithm”. Chinese Physics Letters 38, 030302 (2021).
- “Characterizing local noise in qaoa circuits”. IOP SciNotes 1, 025208 (2020).
- “Error propagation in nisq devices for solving classical optimization problems”. PRX Quantum 3, 040326 (2022).
- “Evaluating the noise resilience of variational quantum algorithms”. Phys. Rev. A 104, 022403 (2021).
- “Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?” (2021). arXiv:2109.01051.
- H.-P. Breuer and F. Petruccione. “Theory of Open Quantum Systems”. Oxford University Press. New York (2002).
- D. Manzano. “A short introduction to the Lindblad master equation”. AIP Advances10 (2020).
- “Evaluating analytic gradients on quantum hardware”. Phys. Rev. A 99, 032331 (2019).
- G. E. Crooks. “Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition” (2019). arXiv:1905.13311.
- “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets”. Nature 549, 242–246 (2017).
- “Multi-angle quantum approximate optimization algorithm”. Scientific Reports 12, 6781 (2022).
- “Quantum Computation and Quantum Information: 10th Anniversary Edition”. Cambridge University Press. Cambridge (2011). 10th edition.
- F. Hiai and M. B. Ruskai. “Contraction coefficients for noisy quantum channels”. Journal of Mathematical Physics 57, 015211 (2015).
- M. Raginsky. “Strictly contractive quantum channels and physically realizable quantum computers”. Phys. Rev. A 65, 032306 (2002).
- A. Granas and J. Dugundji. “Fixed Point Theory”. Springer-Verlag. New York (2003). 10th edition.
- A. A. Mele. “Introduction to Haar Measure Tools in Quantum Information: A Beginner’s Tutorial” (2023). arXiv:2307.08956.
- “Exponentially tighter bounds on limitations of quantum error mitigation” (2022). arXiv:2210.11505.
- “Noise and the frontier of quantum supremacy”. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). Pages 1308–1317. (2022).
- “Conditions for strictly purity-decreasing quantum markovian dynamics”. Chemical Physics 322, 82–86 (2006).
- W. Hoeffding. “Probability inequalities for sums of bounded random variables”. Journal of the American Statistical Association 58, 13–30 (1963).
- “The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model”. In François Le Gall and Tomoyuki Morimae, editors, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Volume 232 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:21. Dagstuhl, Germany (2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
- T. Kadowaki and H. Nishimori. “Quantum annealing in the transverse ising model”. Phys. Rev. E 58, 5355–5363 (1998).
- “Scaling quantum approximate optimization on near-term hardware”. Scientific Reports 12, 12388 (2022).
- J. Kattemölle and G. Burkard. “Ability of error correlations to improve the performance of variational quantum algorithms”. Phys. Rev. A 107, 042426 (2023).
- “The Adjoint Is All You Need: Characterizing Barren Plateaus in Quantum Ansätze” (2023). arXiv:2309.07902.
- “A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits” (2023). arXiv:2309.09342.
- A. Zee. “Group theory in a nutshell for physicists”. Princeton University Press. Princeton, NJ (2016).
- W. Fulton and J. Harris. “Representation theory: A first course”. Springer. New York, NY (2004).
- “Spectral quantum tomography”. npj Quantum Information 5, 74 (2019).
- “Near-linear constructions of exact unitary 2-designs”. Quantum Info. Comput. 16, 721–756 (2016).
- “Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms”. Advanced Quantum Technologies 2, 1900070 (2019).
- K. Nakaji and N. Yamamoto. “Expressibility of the alternating layered ansatz for quantum computation”. Quantum 5, 434 (2021).
- S. Lloyd. “Quantum approximate optimization is computationally universal” (2018). arXiv:1812.11075.
- “On the universality of the quantum approximate optimization algorithm”. Quantum Information Processing19 (2020).
- “Error mitigation for short-depth quantum circuits”. Phys. Rev. Lett. 119, 180509 (2017).