Real chaos and complex time (2310.08136v2)
Abstract: Real vector fields $\dot{z} = f(z)$ in $\mathbb{R}N$ extend to $\mathbb{C}N$, for complex entire $f$. One known consequence are exponentially small upper bounds \begin{equation*} \label{} C_\eta \exp(-\eta/\varepsilon) \tag{} \end{equation*} on homoclinic splittings under discretizations of step size $\varepsilon>0$, or under rapid forcings of that period. Here the complex time extension of $\Gamma(t)$ is assumed to be analytic in the complex horizontal strip $|\mathrm{Im}\, t|\leq \eta$. The phenomenon relates to adiabatic elimination, infinite order averaging, invisible chaos, and backward error analysis. However, what if $\Gamma(t)$ itself were complex entire? Then $\eta$ could be chosen arbitrarily large. We consider connecting orbits $\Gamma(t)$ between limiting hyperbolic equilibria $f(v_\pm)=0$, for real $t\rightarrow\pm\infty$. For the linearizations $f'(v_\pm)$, we assume real eigenvalues which are nonresonant, separately at $v_\pm$. We then show the existence of singularities of $\Gamma(t)$ in complex time $t$. In that sense, real connecting orbits are accompanied by finite time blow-up, in imaginary time. Moreover, the singularities bound admissible $\eta$ in exponential estimates \eqref{*}. The cases of complex or resonant eigenvalues are completely open. We therefore offer a 1,000 Euro reward to any mathematician, up to and including non-permanent PostDoc level, who first comes up with a complex entire homoclinic orbit $\Gamma(t)$, in the above setting. Such an example would exhibit ultra-exponentially small separatrix splittings, and ultra-invisible chaos, under discretization. We also provide a time-reversible example of an entire periodic orbit with ultra-sharp Arnold tongues, alias ultra-invisible phaselocking, under discretization.
- R. Abraham and J. Robbin. Transversal Mappings and Flows. W.A. Benjamin Inc., New York 1967.
- V.I. Arnold. Ordinary Differential Equations. Springer-Verlag, Berlin 1992.
- V.I.Arnold. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, Berlin 1988.
- G. Belitskii and V. Tkachenko. One-Dimensional Functional Equations. Birkhäuser, Basel 2003.
- G. Benettin and A. Giorgilli. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Physics 74 (1994), 1117–1143.
- A.S. Besicovitch. Almost Periodic Functions. Cambridge University Press 1932.
- N.A. Bobylev and P.E. Kloeden. Periodic solutions of autonomous systems under discretization. Num. Fct. Analysis Optim. 18 (1997), 659–665. doi.org/10.1080/01630569708816785
- H. Bohr. Fastperiodische Funktionen. Springer-Verlag, Berlin 1932.
- W.-J. Beyn. On invariant closed curves for one-step methods. Numer. Math. 51 (1987), 103–122.
- P. Brunovský. Generic properties of the rotation number of one-parameter diffeomorphisms of the circle. Czech. Math. J. 24 (1974), 74–90.
- A. Chenciner. Bifurcations de points fixes elliptiques. III: Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes. Publ. Math. IHES 66 (1988), 5–91.
- S.-N. Chow and J. Hale. Methods of Bifurcation Theory. Springer-Verlag, New York 1982.
- C. Corduneanu. Almost Periodic Functions. With the collaboration of N. Gheorghiu and V. Barbu. Chelsea Publishing Company, New York 1989.
- R.L. Devaney. An Introduction to Chaotic Dynamical Systems. Third edition. CRC Press, Boca Raton FL 2022.
- B. Fiedler (ed.). Handbook of Dynamical Systems 2. Elsevier, Amsterdam 2002.
- B. Fiedler and J. Scheurle. Discretization of Homoclinic Orbits, Rapid Forcing and “Invisible” Chaos. Mem. Am. Math. Soc. 570, Providence R.I. 1996.
- B. Fiedler and D. Turaev. Coalescence of reversible homoclinic orbits causes elliptic resonance. Int. J. Bif. Chaos 6 (1996), 1007–1027.
- V.G. Gelfreich and V.F. Lazutkin. Splitting of separatrices: perturbation theory and exponential smallness. Russ. Math. Surv. 56 (2001), 499–558.
- V.G. Gelfreich. Numerics and exponential smallness. In [Fie02] (2002), 265–312.
- V.G. Gelfreich. Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms. Int. Soc. Analysis Appl. Comput. 10 (2003), 187–197.
- E. Hairer. Backward analysis of numerical integrators and symplectic methods. Ann. Numer. Math. 1 (1994), 107–132.
- E. Hairer and Ch. Lubich. The life-span of backward error analysis for numerical integrators. Numer. Math. 76 (1997), 441–462.
- A. Haraux. A simple almost-periodicity criterion and applications. J. Differ. Eqs. 66 (1987), 51–61.
- P. Hartman. Ordinary Differential Equations. Second edition. Birkhäuser, Boston 1982.
- B. Hasselblatt, A. Katok. A First Course in Dynamics. With a Panorama of Recent Developments. Cambridge University Press 2003.
- D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, New York 1981.
- G. Iooss and E. Lombardi. Approximate invariant manifolds up to exponentially small terms. J. Differ. Eqs. 248 (2010), 1410–1431.
- Y. Ilyashenko and S. Yakovenko. Lectures on Analytic Differential Equations. Am. Math. Soc., Providence RI 2008.
- U. Kirchgraber. Multi-step methods are essentially one-step methods. Numer. Math. 48 (1986), 85–90.
- N. Kopell. Commuting diffeomorphisms. Global Analysis. Proc. Symp. Pure Math. 14 (1970), 165–184.
- K.U. Kristiansen and C. Wulff. Exponential estimates of symplectic slow manifolds. J. Differ. Eqs. 261 (2016), 56–101.
- Y.A. Kuznetsov. Elements of Applied Bifurcation Theory. Second edition. Springer-Verlag, New York 1998.
- S. Lang. Elliptic Functions. Second edition. Springer-Verlag, New York 1987.
- V.F. Lazutkin. Splitting of complex separatrices. Funct. Analysis Appl. 22 (1988), 154–156.
- G. Ligeti. Études pour Piano II. 13: L’escalier du diable. Schott Music, Mainz 1998.
- E. Lombardi. Oscillatory Integrals and Phenomena Beyond all Algebraic Orders with Applications to Homoclinic Orbits in Reversible Systems. Springer-Verlag, Berlin 2000.
- K. Masuda. Blow-up of solutions of some nonlinear diffusion equations. North-Holland Math. Stud. 81 (1982), 119–131.
- K. Matthies. Time-averaging under fast periodic forcing of parabolic partial differential equations: Exponential estimates. J. Differ. Eqs. 174 (2001), 133–180.
- K. Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discr. Contin. Dyn. Syst. 9 (2003), 585–602.
- K. Matthies. Backward error analysis of a full discretisation scheme for a class of parabolic partial differential equations. Nonlin. Analysis TMA 52 (2003), 805–826.
- K. Matthies. Homogenisation of exponential order for elliptic systems in infinite cylinders. Asympt. Analysis 43 (2005), 205–232.
- K. Matthies. Exponential averaging under rapid quasiperiodic forcing. Adv. Differ. Eqs. 13 (2008), 427–456.
- K. Matthies and A. Scheel. Exponential averaging for Hamiltonian evolution equations. Trans. Am. Math. Soc. 355 (2003), 747–773.
- J. Moser. Lectures on Hamiltonian Systems. Mem. Am. Math. Soc. 81, Providence R.I. 1968.
- J. Moser. Stable and Random Motions in Dynamical Systems. With Special Emphasis on Celestial Mechanics. Princeton University Press, 1973.
- A.I. Neishtadt. On the separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech. 48 (1984), 134–139.
- J. Palis and W. de Melo. Geometric Theory of Dynamical Systems. An Introduction. Springer-Verlag, New York 1982.
- J. Palis and F. Takens. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors. Cambridge University Press, 1993.
- A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York 1983.
- S. Reich. Backward error analysis for numerical integrators. SIAM J. Numer. Analysis 36 (1999), 1549–1570.
- F. Rellich. Elliptische Funktionen und die ganzen Lösungen von y′′=f(y)superscript𝑦′′𝑓𝑦y^{\prime\prime}=f(y)italic_y start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT = italic_f ( italic_y ). Math. Z. 47 (1940), 153–160. doi.org/10.1007/bf01180954
- M.B. Sevryuk. Reversible Systems. Springer-Verlag, Berlin 1986.
- S. Smale. Differentiable dynamical systems. Bull. Am. Math. Soc. 73 (1967), 747–817.
- S. Smale. Mathematical problems for the next century. Math. Intelligencer 20 (1998), 7–15.
- D. Stoffer. General linear methods: connection to one step methods and invariant curves. Numer. Math. 64 (1993), 395–407.
- H. Stuke. Blow-up in Complex Time. Dissertation Thesis, Freie Universität Berlin 2017. doi.org/10.17169/refubium-11743
- S. Ushiki. On unstable manifolds of analytic diffeomorphisms of the plane. RIMS Kyoto Kokyuroku 403 (1980), 1–7.
- S. Ushiki. Unstable manifolds of analytic dynamical systems. J. Math. Kyoto Univ. 21 (1981), 763–785.
- A. Vanderbauwhede. Local Bifurcation and Symmetry. Pitman, Boston 1982.
- A. Vanderbauwhede and B. Fiedler. Homoclinic period blow-up in reversible and conservative systems. Z. angew. Math. Phys. 43 (1992), 292–318.
- H. Wittich. Ganze Lösungen der Differentialgleichung w′′=f(w)superscript𝑤′′𝑓𝑤w^{\prime\prime}=f(w)italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT = italic_f ( italic_w ). Math. Z. 47 (1941), 422–426. doi.org/10.1007/BF01180973
- H. Wittich. Ganze transzendente Lösungen algebraischer Differentialgleichungen. Math. Ann. 122 (1950), 37–46. doi.org/10.1007/BF01342967
- C. Wulff. Theory of Meandering and Drifting Spiral Waves in Reaction-Diffusion Systems. Dissertation Thesis, Freie Universität Berlin 1996.
Collections
Sign up for free to add this paper to one or more collections.