Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Real chaos and complex time (2310.08136v2)

Published 12 Oct 2023 in math.DS and math.CV

Abstract: Real vector fields $\dot{z} = f(z)$ in $\mathbb{R}N$ extend to $\mathbb{C}N$, for complex entire $f$. One known consequence are exponentially small upper bounds \begin{equation*} \label{} C_\eta \exp(-\eta/\varepsilon) \tag{} \end{equation*} on homoclinic splittings under discretizations of step size $\varepsilon>0$, or under rapid forcings of that period. Here the complex time extension of $\Gamma(t)$ is assumed to be analytic in the complex horizontal strip $|\mathrm{Im}\, t|\leq \eta$. The phenomenon relates to adiabatic elimination, infinite order averaging, invisible chaos, and backward error analysis. However, what if $\Gamma(t)$ itself were complex entire? Then $\eta$ could be chosen arbitrarily large. We consider connecting orbits $\Gamma(t)$ between limiting hyperbolic equilibria $f(v_\pm)=0$, for real $t\rightarrow\pm\infty$. For the linearizations $f'(v_\pm)$, we assume real eigenvalues which are nonresonant, separately at $v_\pm$. We then show the existence of singularities of $\Gamma(t)$ in complex time $t$. In that sense, real connecting orbits are accompanied by finite time blow-up, in imaginary time. Moreover, the singularities bound admissible $\eta$ in exponential estimates \eqref{*}. The cases of complex or resonant eigenvalues are completely open. We therefore offer a 1,000 Euro reward to any mathematician, up to and including non-permanent PostDoc level, who first comes up with a complex entire homoclinic orbit $\Gamma(t)$, in the above setting. Such an example would exhibit ultra-exponentially small separatrix splittings, and ultra-invisible chaos, under discretization. We also provide a time-reversible example of an entire periodic orbit with ultra-sharp Arnold tongues, alias ultra-invisible phaselocking, under discretization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. R. Abraham and J. Robbin. Transversal Mappings and Flows. W.A. Benjamin Inc., New York 1967.
  2. V.I. Arnold. Ordinary Differential Equations. Springer-Verlag, Berlin 1992.
  3. V.I.Arnold. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, Berlin 1988.
  4. G. Belitskii and V. Tkachenko. One-Dimensional Functional Equations. Birkhäuser, Basel 2003.
  5. G. Benettin and A. Giorgilli. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Physics 74 (1994), 1117–1143.
  6. A.S. Besicovitch. Almost Periodic Functions. Cambridge University Press 1932.
  7. N.A. Bobylev and P.E. Kloeden. Periodic solutions of autonomous systems under discretization. Num. Fct. Analysis Optim. 18 (1997), 659–665. doi.org/10.1080/01630569708816785
  8. H. Bohr. Fastperiodische Funktionen. Springer-Verlag, Berlin 1932.
  9. W.-J. Beyn. On invariant closed curves for one-step methods. Numer. Math. 51 (1987), 103–122.
  10. P. Brunovský. Generic properties of the rotation number of one-parameter diffeomorphisms of the circle. Czech. Math. J. 24 (1974), 74–90.
  11. A. Chenciner. Bifurcations de points fixes elliptiques. III: Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes. Publ. Math. IHES 66 (1988), 5–91.
  12. S.-N. Chow and J. Hale. Methods of Bifurcation Theory. Springer-Verlag, New York 1982.
  13. C. Corduneanu. Almost Periodic Functions. With the collaboration of N. Gheorghiu and V. Barbu. Chelsea Publishing Company, New York 1989.
  14. R.L. Devaney. An Introduction to Chaotic Dynamical Systems. Third edition. CRC Press, Boca Raton FL 2022.
  15. B. Fiedler (ed.). Handbook of Dynamical Systems 2. Elsevier, Amsterdam 2002.
  16. B. Fiedler and J. Scheurle. Discretization of Homoclinic Orbits, Rapid Forcing and “Invisible” Chaos. Mem. Am. Math. Soc. 570, Providence R.I. 1996.
  17. B. Fiedler and D. Turaev. Coalescence of reversible homoclinic orbits causes elliptic resonance. Int. J. Bif. Chaos 6 (1996), 1007–1027.
  18. V.G. Gelfreich and V.F. Lazutkin. Splitting of separatrices: perturbation theory and exponential smallness. Russ. Math. Surv. 56 (2001), 499–558.
  19. V.G. Gelfreich. Numerics and exponential smallness. In [Fie02] (2002), 265–312.
  20. V.G. Gelfreich. Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms. Int. Soc. Analysis Appl. Comput. 10 (2003), 187–197.
  21. E. Hairer. Backward analysis of numerical integrators and symplectic methods. Ann. Numer. Math. 1 (1994), 107–132.
  22. E. Hairer and Ch. Lubich. The life-span of backward error analysis for numerical integrators. Numer. Math. 76 (1997), 441–462.
  23. A. Haraux. A simple almost-periodicity criterion and applications. J. Differ. Eqs. 66 (1987), 51–61.
  24. P. Hartman. Ordinary Differential Equations. Second edition. Birkhäuser, Boston 1982.
  25. B. Hasselblatt, A. Katok. A First Course in Dynamics. With a Panorama of Recent Developments. Cambridge University Press 2003.
  26. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, New York 1981.
  27. G. Iooss and E. Lombardi. Approximate invariant manifolds up to exponentially small terms. J. Differ. Eqs. 248 (2010), 1410–1431.
  28. Y. Ilyashenko and S. Yakovenko. Lectures on Analytic Differential Equations. Am. Math. Soc., Providence RI 2008.
  29. U. Kirchgraber. Multi-step methods are essentially one-step methods. Numer. Math. 48 (1986), 85–90.
  30. N. Kopell. Commuting diffeomorphisms. Global Analysis. Proc. Symp. Pure Math. 14 (1970), 165–184.
  31. K.U. Kristiansen and C. Wulff. Exponential estimates of symplectic slow manifolds. J. Differ. Eqs. 261 (2016), 56–101.
  32. Y.A. Kuznetsov. Elements of Applied Bifurcation Theory. Second edition. Springer-Verlag, New York 1998.
  33. S. Lang. Elliptic Functions. Second edition. Springer-Verlag, New York 1987.
  34. V.F. Lazutkin. Splitting of complex separatrices. Funct. Analysis Appl. 22 (1988), 154–156.
  35. G. Ligeti. Études pour Piano II. 13: L’escalier du diable. Schott Music, Mainz 1998.
  36. E. Lombardi. Oscillatory Integrals and Phenomena Beyond all Algebraic Orders with Applications to Homoclinic Orbits in Reversible Systems. Springer-Verlag, Berlin 2000.
  37. K. Masuda. Blow-up of solutions of some nonlinear diffusion equations. North-Holland Math. Stud. 81 (1982), 119–131.
  38. K. Matthies. Time-averaging under fast periodic forcing of parabolic partial differential equations: Exponential estimates. J. Differ. Eqs. 174 (2001), 133–180.
  39. K. Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discr. Contin. Dyn. Syst. 9 (2003), 585–602.
  40. K. Matthies. Backward error analysis of a full discretisation scheme for a class of parabolic partial differential equations. Nonlin. Analysis TMA 52 (2003), 805–826.
  41. K. Matthies. Homogenisation of exponential order for elliptic systems in infinite cylinders. Asympt. Analysis 43 (2005), 205–232.
  42. K. Matthies. Exponential averaging under rapid quasiperiodic forcing. Adv. Differ. Eqs. 13 (2008), 427–456.
  43. K. Matthies and A. Scheel. Exponential averaging for Hamiltonian evolution equations. Trans. Am. Math. Soc. 355 (2003), 747–773.
  44. J. Moser. Lectures on Hamiltonian Systems. Mem. Am. Math. Soc. 81, Providence R.I. 1968.
  45. J. Moser. Stable and Random Motions in Dynamical Systems. With Special Emphasis on Celestial Mechanics. Princeton University Press, 1973.
  46. A.I. Neishtadt. On the separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech. 48 (1984), 134–139.
  47. J. Palis and W. de Melo. Geometric Theory of Dynamical Systems. An Introduction. Springer-Verlag, New York 1982.
  48. J. Palis and F. Takens. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors. Cambridge University Press, 1993.
  49. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York 1983.
  50. S. Reich. Backward error analysis for numerical integrators. SIAM J. Numer. Analysis 36 (1999), 1549–1570.
  51. F. Rellich. Elliptische Funktionen und die ganzen Lösungen von y′′=f⁢(y)superscript𝑦′′𝑓𝑦y^{\prime\prime}=f(y)italic_y start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT = italic_f ( italic_y ). Math. Z. 47 (1940), 153–160. doi.org/10.1007/bf01180954
  52. M.B. Sevryuk. Reversible Systems. Springer-Verlag, Berlin 1986.
  53. S. Smale. Differentiable dynamical systems. Bull. Am. Math. Soc. 73 (1967), 747–817.
  54. S. Smale. Mathematical problems for the next century. Math. Intelligencer 20 (1998), 7–15.
  55. D. Stoffer. General linear methods: connection to one step methods and invariant curves. Numer. Math. 64 (1993), 395–407.
  56. H. Stuke. Blow-up in Complex Time. Dissertation Thesis, Freie Universität Berlin 2017. doi.org/10.17169/refubium-11743
  57. S. Ushiki. On unstable manifolds of analytic diffeomorphisms of the plane. RIMS Kyoto Kokyuroku 403 (1980), 1–7.
  58. S. Ushiki. Unstable manifolds of analytic dynamical systems. J. Math. Kyoto Univ. 21 (1981), 763–785.
  59. A. Vanderbauwhede. Local Bifurcation and Symmetry. Pitman, Boston 1982.
  60. A. Vanderbauwhede and B. Fiedler. Homoclinic period blow-up in reversible and conservative systems. Z. angew. Math. Phys. 43 (1992), 292–318.
  61. H. Wittich. Ganze Lösungen der Differentialgleichung w′′=f⁢(w)superscript𝑤′′𝑓𝑤w^{\prime\prime}=f(w)italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT = italic_f ( italic_w ). Math. Z. 47 (1941), 422–426. doi.org/10.1007/BF01180973
  62. H. Wittich. Ganze transzendente Lösungen algebraischer Differentialgleichungen. Math. Ann. 122 (1950), 37–46. doi.org/10.1007/BF01342967
  63. C. Wulff. Theory of Meandering and Drifting Spiral Waves in Reaction-Diffusion Systems. Dissertation Thesis, Freie Universität Berlin 1996.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube