Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ZEST: Attention-based Zero-Shot Learning for Unseen IoT Device Classification (2310.08036v2)

Published 12 Oct 2023 in cs.NI, cs.CR, and cs.LG

Abstract: Recent research works have proposed machine learning models for classifying IoT devices connected to a network. However, there is still a practical challenge of not having all devices (and hence their traffic) available during the training of a model. This essentially means, during the operational phase, we need to classify new devices not seen in the training phase. To address this challenge, we propose ZEST -- a ZSL (zero-shot learning) framework based on self-attention for classifying both seen and unseen devices. ZEST consists of i) a self-attention based network feature extractor, termed SANE, for extracting latent space representations of IoT traffic, ii) a generative model that trains a decoder using latent features to generate pseudo data, and iii) a supervised model that is trained on the generated pseudo data for classifying devices. We carry out extensive experiments on real IoT traffic data; our experiments demonstrate i) ZEST achieves significant improvement (in terms of accuracy) over the baselines; ii) SANE is able to better extract meaningful representations than LSTM which has been commonly used for modeling network traffic.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the Mirai Botnet,” in Proc. USENIX Security, 2017, pp. 1093–1110.
  2. S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Measurement and Analysis of Hajime: a Peer-to-peer IoT Botnet,” in Proc. NDSS, 2019.
  3. B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray, “Behavioral fingerprinting of IoT devices,” in Proc. of the workshop on attacks and solutions in hardware security, 2018, pp. 41–50.
  4. N. J. Apthorpe, D. Reisman, and N. Feamster, “A Smart Home is No Castle: Privacy Vulnerabilities of Encrypted IoT Traffic,” CoRR, vol. abs/1705.06805, 2017.
  5. M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma, “IoT SENTINEL: Automated Device-Type Identification for Security Enforcement in IoT,” in 37th IEEE International Conference on Distributed Computing Systems, ICDCS, 2017, pp. 2177–2184.
  6. A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake, A. Vishwanath, and V. Sivaraman, “Characterizing and classifying IoT traffic in smart cities and campuses,” in IEEE International Conference on Computer Communications Workshops, INFOCOM, 2017, pp. 559–564.
  7. S. Dong, Z. Li, D. Tang, J. Chen, M. Sun, and K. Zhang, “Your Smart Home Can’t Keep a Secret: Towards Automated Fingerprinting of IoT Traffic,” in Proc. AsiaCCS, 2020, p. 47–59.
  8. F. Sawadogo, J. Violos, A. Hameed, and A. Leivadeas, “An Unsupervised Machine Learning Approach for IoT Device Categorization,” in IEEE International Mediterranean Conference on Communications and Networking (MeditCom), 2022, pp. 25–30.
  9. S. Zhang, Z. Wang, J. Yang, D. Bai, F. Li, Z. Li, J. Wu, and X. Liu, “Unsupervised IoT Fingerprinting Method via Variational Auto-encoder and K-means,” in IEEE ICC, 2021.
  10. V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gurusamy, “DEFT: A Distributed IoT Fingerprinting Technique,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 940–952, 2019.
  11. B. Atul Desai, D. M. Divakaran, I. Nevat, G. W. Peters, and M. Gurusamy, “A feature-ranking framework for IoT device classification,” in 11th Int’l Conf. on Communication Systems & Networks (COMSNETS 2019), Jan. 2019.
  12. R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Packet-Level Signatures for Smart Home Devices,” in Proc. NDSS, 2020.
  13. B. Chakraborty, D. M. Divakaran, I. Nevat, G. W. Peters, and M. Gurusamy, “Cost-aware Feature Selection for IoT Device Classification,” IEEE Internet of Things Journal, 2021.
  14. L. Fan, S. Zhang, Y. Wu, Z. Wang, C. Duan, J. Li, and J. Yang, “An IoT Device Identification Method based on Semi-supervised Learning,” in 16th International Conference on Network and Service Management (CNSM), 2020, pp. 1–7.
  15. A. Shenoi, P. K. Vairam, K. Sabharwal, J. Li, and D. M. Divakaran, “iPET: Privacy Enhancing Traffic Perturbations for Secure IoT Communications,” Proc. Privacy Enhancing Technologies Symposium (PETS), 2023.
  16. S. Liu, X. Zhu, H. Chen, and Z. Han, “Secure Communication for Integrated Satellite-Terrestrial Backhaul Networks: Focus on Up-link Secrecy Capacity based on Artificial Noise,” IEEE Wireless Communications Letters, pp. 1–1, 2023.
  17. A. Mishra, S. Krishna Reddy, A. Mittal, and H. A. Murthy, “A Generative Model for Zero Shot Learning Using Conditional Variational Autoencoders,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, 2018, pp. 2188–2196.
  18. V. K. Verma, D. Brahma, and P. Rai, “Meta-Learning for Generalized Zero-Shot Learning,” in Proc. of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6062–6069.
  19. B. Zhao, X. Sun, Y. Yao, and Y. Wang, “Zero-shot Learning via Shared-Reconstruction-Graph Pursuit,” arXiv preprint arXiv:1711.07302, 2017.
  20. P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona, “Caltech-UCSD birds 200,” 2010.
  21. C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classification for zero-shot visual object categorization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453–465, 2013.
  22. D. M. Divakaran, S. Le, Y. S. Liau, and V. L. L. Thing, “SLIC: Self-Learning Intelligent Classifier for Network Traffic,” Computer Networks, 2015.
  23. I. Nevat, D. M. Divakaran, S. G. Nagarajan, P. Zhang, L. Su, L. L. Ko, and V. L. L. Thing, “Anomaly Detection and Attribution in Networks With Temporally Correlated Traffic,” IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 131–144, Feb 2018.
  24. K. L. K. Sudheera, D. M. Divakaran, R. P. Singh, and M. Gurusamy, “ADEPT: Detection and Identification of Correlated Attack Stages in IoT Networks,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6591–6607, 2021.
  25. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,” in Proc. NIPS, 2017.
  26. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proc. of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, 2019, pp. 4171–4186.
  27. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” in 9th International Conference on Learning Representations, ICLR, 2021.
  28. N. Q. K. Le, Q.-T. Ho, T.-T.-D. Nguyen, and Y.-Y. Ou, “A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information,” Briefings in Bioinformatics, vol. 22, no. 5, p. bbab005, 2021.
  29. B. Wu, D. Chen, N. V. Abhishek, and M. Gurusamy, “D3T: Double Deep Q-Network Decision Transformer for Service Function Chain Placement,” in 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR), pp. 167–172.
  30. A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Inferring IoT Device Types from Network Behavior Using Unsupervised Clustering,” in 2019 IEEE 44th Conference on Local Computer Networks (LCN), 2019, pp. 230–233.
  31. S. Basu, A. Banerjee, and R. J. Mooney, “Semi-supervised Clustering by Seeding,” in Machine Learning, Proceedings of the Nineteenth International Conference (ICML), 2002, pp. 27–34.
  32. D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” Annals of Data Science, vol. 2, pp. 165–193, 2015.
  33. H. He, Y. He, F. Wang, and W. Zhu, “Improved k-means algorithm for clustering non-spherical data,” Expert Systems, vol. 39, no. 9, p. e13062, 2022.
  34. C. Yuan and H. Yang, “Research on K-value selection method of K-means clustering algorithm,” J, vol. 2, no. 2, pp. 226–235, 2019.
  35. Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature Generating Networks for Zero-Shot Learning,” in Proc. CVPR, 2018, pp. 5542–5551.
  36. R. Gao, X. Hou, J. Qin, J. Chen, L. Liu, F. Zhu, Z. Zhang, and L. Shao, “Zero-VAE-GAN: Generating Unseen Features for Generalized and Transductive Zero-Shot Learning,” IEEE Transactions on Image Processing, vol. 29, pp. 3665–3680, 2020.
  37. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  38. M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang et al., “Big bird: Transformers for Longer Sequences,” Advances in neural information processing systems, vol. 33, pp. 17 283–17 297, 2020.
  39. A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath, and V. Sivaraman, “Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics,” IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.
  40. “ZEST Source Code,” https://github.com/Binghui99/ZEST, 2023.

Summary

We haven't generated a summary for this paper yet.