Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causality-based Cost Allocation for Peer-to-Peer Energy Trading in Distribution System (2310.07974v2)

Published 12 Oct 2023 in eess.SY and cs.SY

Abstract: While peer-to-peer energy trading has the potential to harness the capabilities of small-scale energy resources, a peer-matching process often overlooks power grid conditions, yielding increased losses, line congestion, and voltage problems. This imposes a great challenge on the distribution system operator (DSO), which can eventually limit peer-to-peer energy trading. To align the peer-matching process with the physical grid conditions, this paper proposes a cost causality-based network cost allocation method and the grid-aware peer-matching process. Building on the cost causality principle, the proposed model utilizes the network cost (loss, congestion, and voltage) as a signal to encourage peers to adjust their preferences ensuring that matches are more in line with grid conditions, leading to enhanced social welfare. Additionally, this paper presents mathematical proof showing the superiority of the causality-based cost allocation over existing methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. H. J. Kim et al., “Pricing mechanisms for peer-to-peer energy trading: Towards an integrated understanding of energy and network service pricing mechanisms,” Renewable and Sustainable Energy Reviews, vol. 183, 2023.
  2. W. Tushar, C. Yuen, T. K. Saha, T. Morstyn, A. C. Chapman, M. J. E. Alam, S. Hanif, and H. V. Poor, “Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges,” Applied Energy, vol. 282, p. 116131, 2021.
  3. W. Tushar, T. K. Saha, C. Yuen, T. Morstyn, H. V. Poor, R. Bean et al., “Grid influenced peer-to-peer energy trading,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1407–1418, 2019.
  4. H. Kim, J. Lee, S. Bahrami, and V. W. Wong, “Direct energy trading of microgrids in distribution energy market,” IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 639–651, 2019.
  5. D. H. Nguyen and T. Ishihara, “Distributed peer-to-peer energy trading for residential fuel cell combined heat and power systems,” International Journal of Electrical Power & Energy Systems, vol. 125, 2021.
  6. K. Anoh, S. Maharjan, A. Ikpehai, Y. Zhang, and B. Adebisi, “Energy peer-to-peer trading in virtual microgrids in smart grids: A game-theoretic approach,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1264–1275, 2019.
  7. A. Paudel, L. P. M. I. Sampath, J. Yang, and H. B. Gooi, “Peer-to-peer energy trading in smart grid considering power losses and network fees,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4727–4737, 2020.
  8. T. Baroche, P. Pinson, R. L. G. Latimier, and H. B. Ahmed, “Exogenous cost allocation in peer-to-peer electricity markets,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2553–2564, 2019.
  9. J. Guerrero, A. C. Chapman, and G. Verbič, “Decentralized p2p energy trading under network constraints in a low-voltage network,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5163–5173, 2018.
  10. H. Haggi and W. Sun, “Multi-round double auction-enabled peer-to-peer energy exchange in active distribution networks,” IEEE Trans. Smart Grid, vol. 12, 2021.
  11. T. Morstyn, A. Teytelboym, C. Hepburn, and M. D. McCulloch, “Integrating p2p energy trading with probabilistic distribution locational marginal pricing,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3095–3106, 2019.
  12. J. Kim and Y. Dvorkin, “A p2p-dominant distribution system architecture,” IEEE Trans. Power Syst., 2019.
  13. G. Maser, “It’s electric, but ferc’s cost-causation boogie-woogie fails to justify socialized costs for renewable transmission,” Geo. LJ, vol. 100, p. 1829, 2011.
  14. P. Samadi et al., “Optimal real-time pricing algorithm based on utility maximization for smart grid,” in 2010 First IEEE international conference on smart grid communications.   IEEE, 2010.
  15. J. B. Rosen, “Existence and uniqueness of equilibrium points for concave n-person games,” Econometrica: Journal of the Econometric Society, pp. 520–534, 1965.
  16. K. Christakou, J.-Y. LeBoudec, M. Paolone, and D.-C. Tomozei, “Efficient computation of sensitivity coefficients of node voltages and line currents in unbalanced radial electrical distribution networks,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 741–750, 2013.
  17. Q. Zhou and J. Bialek, “Simplified calculation of voltage and loss sensitivity factors in distribution networks,” in Proc. 16th Power Syst. Comput. Conf.(PSCC2008), 2008.
  18. M. Yan, M. Shahidehpour, A. Paaso, L. Zhang, A. Alabdulwahab, and A. Abusorrah, “Distribution network-constrained optimization of peer-to-peer transactive energy trading among multi-microgrids,” IEEE transactions on smart grid, vol. 12, no. 2, pp. 1033–1047, 2020.
  19. S. H. Dolatabadi, M. Ghorbanian, P. Siano, and N. D. Hatziargyriou, “An enhanced IEEE 33 bus benchmark test system for distribution system studies,” IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 2565–2572, 2020.
  20. H. J. Kim et al., “Code supplement for causality-based cost allocation for p2p energy trading in distribution system,” 2023, https://github.com/githjkim/causality_cost_allocation.git.

Summary

We haven't generated a summary for this paper yet.