Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An On-Chip Trainable Neuron Circuit for SFQ-Based Spiking Neural Networks (2310.07824v1)

Published 11 Oct 2023 in cs.NE and cond-mat.supr-con

Abstract: We present an on-chip trainable neuron circuit. Our proposed circuit suits bio-inspired spike-based time-dependent data computation for training spiking neural networks (SNN). The thresholds of neurons can be increased or decreased depending on the desired application-specific spike generation rate. This mechanism provides us with a flexible design and scalable circuit structure. We demonstrate the trainable neuron structure under different operating scenarios. The circuits are designed and optimized for the MIT LL SFQ5ee fabrication process. Margin values for all parameters are above 25\% with a 3GHz throughput for a 16-input neuron.

Citations (3)

Summary

We haven't generated a summary for this paper yet.