Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Gaussian deconvolution and the lace expansion for spread-out models (2310.07640v2)

Published 11 Oct 2023 in math.PR, math-ph, and math.MP

Abstract: We present a new proof of $|x|{-(d-2)}$ decay of critical two-point functions for spread-out statistical mechanical models on $\mathbb{Z}d$ above the upper critical dimension, based on the lace expansion and assuming appropriate diagrammatic estimates. Applications include spread-out models of the Ising model and self-avoiding walk in dimensions $d>4$, and spread-out percolation for $d>6$. The proof is based on an extension of the new Gaussian deconvolution theorem we obtained in a paper. It provides a technically simpler and conceptually more transparent approach than the method of Hara, van der Hofstad and Slade (2003).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Lace expansion for dummies. Ann. I. Henri Poincaré Probab. Statist., 54:141–153, (2018).
  2. D.C. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys., 97:125–148, (1985).
  3. R. Fitzner and R. van der Hofstad. Mean-field behavior for nearest-neighbor percolation in d>10𝑑10d>10italic_d > 10. Electron. J. Probab., 22:1–65, (2017).
  4. T. Hara. Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab., 36:530–593, (2008).
  5. Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab., 31:349–408, (2003).
  6. T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys., 128:333–391, (1990).
  7. T. Hara and G. Slade. Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys., 147:101–136, (1992).
  8. M. Heydenreich and R. van der Hofstad. Progress in High-Dimensional Percolation and Random Graphs. Springer International Publishing Switzerland, (2017).
  9. The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys., 114:625–663, (2004).
  10. R. van der Hofstad and G. Slade. A generalised inductive approach to the lace expansion. Probab. Theory Related Fields, 122:389–430, (2002).
  11. High-dimensional near-critical percolation and the torus plateau. Ann. Probab., 51:580–625, (2023).
  12. G. Kozma and A. Nachmias. Arm exponents in high dimensional percolation. J. Am. Math. Soc., 24:375–409, (2011).
  13. G.F. Lawler and V. Limic. Random Walk: A Modern Introduction. Cambridge University Press, Cambridge, (2010).
  14. Y. Liu and G. Slade. Gaussian deconvolution and the lace expansion. Preprint, https://arxiv.org/pdf/2310.07635.pdf, (2023).
  15. A. Sakai. Lace expansion for the Ising model. Commun. Math. Phys., 272:283–344, (2007). Correction: A. Sakai. Correct bounds on the Ising lace-expansion coefficients. Commun. Math. Phys., 392:783–823, (2022).
  16. G. Slade. The Lace Expansion and its Applications. Springer, Berlin, (2006). Lecture Notes in Mathematics Vol. 1879. Ecole d’Eté de Probabilités de Saint–Flour XXXIV–2004.
  17. G. Slade. A simple convergence proof for the lace expansion. Ann. I. Henri Poincaré Probab. Statist., 58:26–33, (2022).
  18. K. Uchiyama. Green’s functions for random walks on ℤNsuperscriptℤ𝑁\mathbb{Z}^{N}blackboard_Z start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT. Proc. London Math. Soc., 77:215–240, (1998).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com