Hexa: Self-Improving for Knowledge-Grounded Dialogue System (2310.06404v3)
Abstract: A common practice in knowledge-grounded dialogue generation is to explicitly utilize intermediate steps (e.g., web-search, memory retrieval) with modular approaches. However, data for such steps are often inaccessible compared to those of dialogue responses as they are unobservable in an ordinary dialogue. To fill in the absence of these data, we develop a self-improving method to improve the generative performances of intermediate steps without the ground truth data. In particular, we propose a novel bootstrapping scheme with a guided prompt and a modified loss function to enhance the diversity of appropriate self-generated responses. Through experiments on various benchmark datasets, we empirically demonstrate that our method successfully leverages a self-improving mechanism in generating intermediate and final responses and improves the performances on the task of knowledge-grounded dialogue generation.
- Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and W. B. Dolan, “Dialogpt : Large-scale generative pre-training for conversational response generation,” in Annual Meeting of the Association for Computational Linguistics, 2019.
- D. D. Freitas, M.-T. Luong, D. R. So, J. Hall, N. Fiedel, R. Thoppilan, Z. Yang, A. Kulshreshtha, G. Nemade, Y. Lu, and Q. V. Le, “Towards a human-like open-domain chatbot,” ArXiv, vol. abs/2001.09977, 2020.
- S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott, E. M. Smith, Y.-L. Boureau, and J. Weston, “Recipes for building an open-domain chatbot,” in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Online: Association for Computational Linguistics, Apr. 2021, pp. 300–325. [Online]. Available: https://aclanthology.org/2021.eacl-main.24
- J. Xu, A. Szlam, and J. Weston, “Beyond goldfish memory: Long-term open-domain conversation,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational Linguistics, may 2022, pp. 5180–5197. [Online]. Available: https://aclanthology.org/2022.acl-long.356
- K. Shuster, J. Xu, M. Komeili, D. Ju, E. M. Smith, S. Roller, M. Ung, M. Chen, K. Arora, J. Lane, M. Behrooz, W. Ngan, S. Poff, N. Goyal, A. D. Szlam, Y.-L. Boureau, M. Kambadur, and J. Weston, “Blenderbot 3: a deployed conversational agent that continually learns to responsibly engage,” ArXiv, vol. abs/2208.03188, 2022.
- R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.
- T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.
- A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.
- P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp tasks,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 9459–9474. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
- L. Adolphs, K. Shuster, J. Urbanek, A. Szlam, and J. Weston, “Reason first, then respond: Modular generation for knowledge-infused dialogue,” arXiv preprint arXiv:2111.05204, 2021.
- Y. Zhang, S. Sun, X. Gao, Y. Fang, C. Brockett, M. Galley, J. Gao, and B. Dolan, “Retgen: A joint framework for retrieval and grounded text generation modeling,” in AAAI Conference on Artificial Intelligence, 2021.
- K. Shuster, M. Komeili, L. Adolphs, S. Roller, A. Szlam, and J. Weston, “Language models that seek for knowledge: Modular search & generation for dialogue and prompt completion,” arXiv preprint arXiv:2203.13224, 2022.
- E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston, “Wizard of wikipedia: Knowledge-powered conversational agents,” in International Conference on Learning Representations, 2019. [Online]. Available: https://openreview.net/forum?id=r1l73iRqKm
- R. Lian, M. Xie, F. Wang, J. Peng, and H. Wu, “Learning to select knowledge for response generation in dialog systems,” arXiv preprint arXiv:1902.04911, 2019.
- X. Zhao, W. Wu, C. Xu, C. Tao, D. Zhao, and R. Yan, “Knowledge-grounded dialogue generation with pre-trained language models,” in EMNLP, 2020.
- M. Komeili, K. Shuster, and J. Weston, “Internet-augmented dialogue generation,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 8460–8478. [Online]. Available: https://aclanthology.org/2022.acl-long.579
- X. Huang, H. He, S. Bao, F. Wang, H. Wu, and H. Wang, “PLATO-KAG: Unsupervised knowledge-grounded conversation via joint modeling,” in Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI. Online: Association for Computational Linguistics, Nov. 2021, pp. 143–154. [Online]. Available: https://aclanthology.org/2021.nlp4convai-1.14
- M. Glass, G. Rossiello, M. F. M. Chowdhury, A. R. Naik, P. Cai, and A. Gliozzo, “Re2g: Retrieve, rerank, generate,” in NAACL, 2022.
- W. Zhou, J. Hu, H. Zhang, X. Liang, M. Sun, C. Xiong, and J. Tang, “Towards interpretable natural language understanding with explanations as latent variables,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 6803–6814. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/4be2c8f27b8a420492f2d44463933eb6-Paper.pdf
- E. Zelikman, Y. Wu, J. Mu, and N. Goodman, “STar: Bootstrapping reasoning with reasoning,” in Advances in Neural Information Processing Systems, 2022.
- C. Schuhmann, “Open assistant / open source chatgpt modeling roadmap,” 2022. [Online]. Available: https://docs.google.com/document/d/1sca4NrCGW_OCaGaR0AqB69G_KCzm2nT0BNUs1jJBYjg/edit
- Y. Hou, Y. Liu, W. Che, and T. Liu, “Sequence-to-sequence data augmentation for dialogue language understanding,” in Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 1234–1245. [Online]. Available: https://aclanthology.org/C18-1105
- K. Sun, S. Moon, P. Crook, S. Roller, B. Silvert, B. Liu, Z. Wang, H. Liu, E. Cho, and C. Cardie, “Adding chit-chat to enhance task-oriented dialogues,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Online: Association for Computational Linguistics, Jun. 2021, pp. 1570–1583. [Online]. Available: https://aclanthology.org/2021.naacl-main.124
- T. Niu and M. Bansal, “Automatically learning data augmentation policies for dialogue tasks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 1317–1323. [Online]. Available: https://aclanthology.org/D19-1132
- R. Zhang, Y. Zheng, J. Shao, X. Mao, Y. Xi, and M. Huang, “Dialogue distillation: Open-domain dialogue augmentation using unpaired data,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, Nov. 2020, pp. 3449–3460. [Online]. Available: https://aclanthology.org/2020.emnlp-main.277
- Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi, “Self-instruct: Aligning language model with self generated instructions,” arXiv preprint arXiv:2212.10560, 2022.
- Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Arunkumar, A. Ashok, A. S. Dhanasekaran, A. Naik, D. Stap et al., “Super-naturalinstructions:generalization via declarative instructions on 1600+ tasks,” in EMNLP, 2022.
- J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” 2022. [Online]. Available: https://arxiv.org/abs/2201.11903
- M. I. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan, A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, and A. Odena, “Show your work: Scratchpads for intermediate computation with language models,” CoRR, vol. abs/2112.00114, 2021. [Online]. Available: https://arxiv.org/abs/2112.00114
- K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, Jul. 2002, pp. 311–318. [Online]. Available: https://aclanthology.org/P02-1040
- C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out. Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81. [Online]. Available: https://aclanthology.org/W04-1013
- T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng, “Ms marco: A human generated machine reading comprehension dataset,” in CoCo@ NIPS, 2016.
- M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension,” arXiv preprint arXiv:1705.03551, 2017.
- J. Xu, M. Ung, M. Komeili, K. Arora, Y.-L. Boureau, and J. Weston, “Learning new skills after deployment: Improving open-domain internet-driven dialogue with human feedback,” 08 2022.
- H. Lee, R. Gupta, A. Rastogi, Y. Cao, B. Zhang, and Y. Wu, “Sgd-x: A benchmark for robust generalization in schema-guided dialogue systems,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 10, 2022, pp. 10 938–10 946.
- S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston, “Personalizing dialogue agents: I have a dog, do you have pets too?” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp. 2204–2213. [Online]. Available: https://aclanthology.org/P18-1205
- E. Dinan, A. Fan, L. Wu, J. Weston, D. Kiela, and A. Williams, “Multi-dimensional gender bias classification,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, Nov. 2020, pp. 314–331. [Online]. Available: https://aclanthology.org/2020.emnlp-main.23
- H. Rashkin, E. M. Smith, M. Li, and Y.-L. Boureau, “Towards empathetic open-domain conversation models: A new benchmark and dataset,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 5370–5381. [Online]. Available: https://aclanthology.org/P19-1534
- B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth, S. Yavuz, B. Goodrich, A. Dubey, K.-Y. Kim, and A. Cedilnik, “Taskmaster-1:toward a realistic and diverse dialog dataset,” in 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Hong Kong, 2019.
- V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih, “Dense passage retrieval for open-domain question answering,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, Nov. 2020, pp. 6769–6781. [Online]. Available: https://www.aclweb.org/anthology/2020.emnlp-main.550
- N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 3982–3992. [Online]. Available: https://aclanthology.org/D19-1410
- S. Moon, P. Shah, A. Kumar, and R. Subba, “OpenDialKG: Explainable conversational reasoning with attention-based walks over knowledge graphs,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 845–854. [Online]. Available: https://aclanthology.org/P19-1081
- H. Rashkin, D. Reitter, G. S. Tomar, and D. Das, “Increasing faithfulness in knowledge-grounded dialogue with controllable features,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Online: Association for Computational Linguistics, Aug. 2021, pp. 704–718. [Online]. Available: https://aclanthology.org/2021.acl-long.58
- Y. Zhu, S. Lu, L. Zheng, J. Guo, W. Zhang, J. Wang, and Y. Yu, “Texygen: A benchmarking platform for text generation models,” SIGIR, 2018.
- J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan, “A diversity-promoting objective function for neural conversation models,” in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, California: Association for Computational Linguistics, Jun. 2016, pp. 110–119. [Online]. Available: https://aclanthology.org/N16-1014
- Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings of the 26th Annual International Conference on Machine Learning, ser. ICML ’09. New York, NY, USA: Association for Computing Machinery, 2009, p. 41–48. [Online]. Available: https://doi.org/10.1145/1553374.1553380
- T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer: Language models can teach themselves to use tools,” 2023.
- X. Li, P. Yu, C. Zhou, T. Schick, L. Zettlemoyer, O. Levy, J. Weston, and M. Lewis, “Self-alignment with instruction backtranslation,” arXiv preprint arXiv:2308.06259, 2023.
- S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer language models,” arXiv preprint arXiv:2205.01068, 2022.