Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Multivariate moment least-squares estimators for reversible Markov chains (2310.06330v2)

Published 10 Oct 2023 in stat.ME

Abstract: Markov chain Monte Carlo (MCMC) is a commonly used method for approximating expectations with respect to probability distributions. Uncertainty assessment for MCMC estimators is essential in practical applications. Moreover, for multivariate functions of a Markov chain, it is important to estimate not only the auto-correlation for each component but also to estimate cross-correlations, in order to better assess sample quality, improve estimates of effective sample size, and use more effective stopping rules. Berg and Song [2022] introduced the moment least squares (momentLS) estimator, a shape-constrained estimator for the autocovariance sequence from a reversible Markov chain, for univariate functions of the Markov chain. Based on this sequence estimator, they proposed an estimator of the asymptotic variance of the sample mean from MCMC samples. In this study, we propose novel autocovariance sequence and asymptotic variance estimators for Markov chain functions with multiple components, based on the univariate momentLS estimators from Berg and Song [2022]. We demonstrate strong consistency of the proposed auto(cross)-covariance sequence and asymptotic variance matrix estimators. We conduct empirical comparisons of our method with other state-of-the-art approaches on simulated and real-data examples, using popular samplers including the random-walk Metropolis sampler and the No-U-Turn sampler from STAN.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube