Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Little is Enough: Boosting Privacy by Sharing Only Hard Labels in Federated Semi-Supervised Learning (2310.05696v4)

Published 9 Oct 2023 in cs.LG

Abstract: In many critical applications, sensitive data is inherently distributed and cannot be centralized due to privacy concerns. A wide range of federated learning approaches have been proposed to train models locally at each client without sharing their sensitive data, typically by exchanging model parameters, or probabilistic predictions (soft labels) on a public dataset or a combination of both. However, these methods still disclose private information and restrict local models to those that can be trained using gradient-based methods. We propose a federated co-training (FedCT) approach that improves privacy by sharing only definitive (hard) labels on a public unlabeled dataset. Clients use a consensus of these shared labels as pseudo-labels for local training. This federated co-training approach empirically enhances privacy without compromising model quality. In addition, it allows the use of local models that are not suitable for parameter aggregation in traditional federated learning, such as gradient-boosted decision trees, rule ensembles, and random forests. Furthermore, we observe that FedCT performs effectively in federated fine-tuning of LLMs, where its pseudo-labeling mechanism is particularly beneficial. Empirical evaluations and theoretical analyses suggest its applicability across a range of federated learning scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (90)
  1. Mushroom. UCI Machine Learning Repository, 1987. DOI: https://doi.org/10.24432/C5959T.
  2. Adult. UCI Machine Learning Repository, 1996. DOI: https://doi.org/10.24432/C5XW20.
  3. Distributed distillation for on-device learning. Advances in Neural Information Processing Systems, 33:22593–22604, 2020.
  4. Blackard, J. Covertype. UCI Machine Learning Repository, 1998. DOI: https://doi.org/10.24432/C50K5N.
  5. Blackmer, W. S. Eu general data protection regulation (gdpr). Official Journal of the European Union, 2014, 2016.
  6. Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on computational learning theory, pp.  92–100, 1998.
  7. Breiman, L. Random forests. Machine learning, 45:5–32, 2001.
  8. CDC. Health and economic costs of chronic disease. National Center for Chronic Disease Prevention and Health Promotion, 2020.
  9. Chakrabarty, N. Brain tumor detection, kaggle, 2018. URL https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection.
  10. Capacity bounded differential privacy. Advances in Neural Information Processing Systems, 32, 2019.
  11. The best of both worlds: Accurate global and personalized models through federated learning with data-free hyper-knowledge distillation. International Conference on Learning Representations ICLR, 2023.
  12. Fedbe: Making bayesian model ensemble applicable to federated learning. In International Conference on Learning Representations, 2020.
  13. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp.  785–794, 2016.
  14. Prediction of chronic kidney disease -a machine learning perspective. IEEE Access, 2021.
  15. Heterogeneous ensemble knowledge transfer for training large models in federated learning. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI), 2022.
  16. Communication-efficient and model-heterogeneous personalized federated learning via clustered knowledge transfer. IEEE Journal of Selected Topics in Signal Processing, 17(1):234–247, 2023.
  17. CMS.gov. National health expenditures 2019 highlights. Center for Medicaid and Medicare Services, 2019.
  18. Modeling wine preferences by data mining from physicochemical properties. Decision support systems, 47(4):547–553, 2009.
  19. Optimal distributed online prediction using mini-batches. Journal of Machine Learning Research, 13(1), 2012.
  20. Semifl: Semi-supervised federated learning for unlabeled clients with alternate training. Advances in Neural Information Processing Systems, 35:17871–17884, 2022.
  21. Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp.  265–284. Springer, 2006.
  22. The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.
  23. Editor, H. J. Healthcare data breach statistics. HIPAA Journal, 2019.
  24. Practical synthetic data generation: balancing privacy and the broad availability of data. O’Reilly Media, 2020.
  25. Short-term outcomes of screening mammography using computer-aided detection a population-based study of medicare enrollees. Annals of Internal Medicine, 158, 2013.
  26. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of statistics, pp.  1189–1232, 2001.
  27. Predictive learning via rule ensembles. The annals of applied statistics, pp.  916–954, 2008.
  28. Empirical comparison of “hard” and “soft” label propagation for relational classification. In International Conference on Inductive Logic Programming, pp.  98–111. Springer, 2007.
  29. Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557, 2017.
  30. Distillation-based semi-supervised federated learning for communication-efficient collaborative training with non-iid private data. IEEE Transactions on Mobile Computing, 22(1):191–205, 2021.
  31. Differentially private binary-and matrix-valued data query: an xor mechanism. Proceedings of the VLDB Endowment, 14(5):849–862, 2021.
  32. Mimic-iii clinical database (version 1.4). PhysioNet, 10:C2XW26, 2016.
  33. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.
  34. Kamp, M. Black-Box Parallelization for Machine Learning. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Universitäts-und Landesbibliothek Bonn, 2019.
  35. Communication-efficient distributed online prediction by dynamic model synchronization. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part I 14, pp.  623–639. Springer, 2014.
  36. Communication-efficient distributed online learning with kernels. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II 16, pp.  805–819. Springer, 2016.
  37. Efficient decentralized deep learning by dynamic model averaging. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18, pp.  393–409. Springer, 2019.
  38. Federated learning from small datasets. In The Eleventh International Conference on Learning Representations, 2023.
  39. Scaffold: Stochastic controlled averaging for federated learning. In International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.
  40. Utilization of computer-aided detection for digital screening mammography in the united states, 2008 to 2016. Journal of the American College of Radiology, 15, 2018.
  41. Identifying medical diagnoses and treatable diseases by image-based deep learning. cell, 172(5):1122–1131, 2018.
  42. An empirical evaluation of machine learning techniques for chronic kidney disease prophecy. IEEE Access, 8, 2020.
  43. Cifar-10 (canadian institute for advanced research), 2010.
  44. How much is enough? choosing ε𝜀\varepsilonitalic_ε for differential privacy. In Information Security, pp.  325–340. Springer, 2011.
  45. Fedmd: Heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581, 2019.
  46. Model-contrastive federated learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.  10713–10722, 2021.
  47. Federated optimization in heterogeneous networks. In Proceedings of Machine learning and systems, volume 2, pp. 429–450, 2020.
  48. Membership leakage in label-only exposures. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp.  880–895, 2021.
  49. Semifed: Semi-supervised federated learning with consistency and pseudo-labeling. arXiv preprint arXiv:2108.09412, 2021.
  50. Ensemble distillation for robust model fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363, 2020.
  51. Prevalence of multiple chronic conditions among medicare beneficiaries, united states, 2010. Preventing Chronic Disease, 10, 2013.
  52. On safeguarding privacy and security in the framework of federated learning. IEEE network, 34(4):242–248, 2020.
  53. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp.  142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.
  54. Efficient large-scale distributed training of conditional maximum entropy models. Advances in neural information processing systems, 22, 2009.
  55. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.  1273–1282. PMLR, 2017.
  56. Ml privacy meter: Aiding regulatory compliance by quantifying the privacy risks of machine learning. arXiv preprint arXiv:2007.09339, 2020.
  57. Uniform convergence may be unable to explain generalization in deep learning. Advances in Neural Information Processing Systems, 32, 2019.
  58. Reading digits in natural images with unsupervised feature learning, 2011.
  59. NIH, N. C. I. The cancer genome atlas program (tcga), 2011. URL https://www.cancer.gov/tcga.
  60. Regional risk: Mapping single and multiple chronic conditions in the united states. SAGE Open, 9, 2019.
  61. Semi-supervised knowledge transfer for deep learning from private training data. International Conference on Learning Representations ICLR, 2017.
  62. Relative flatness and generalization. Advances in neural information processing systems, 34:18420–18432, 2021.
  63. A machine learning methodology for diagnosing chronic kidney disease. IEEE Access, 8, 2020.
  64. Quinlan, J. R. Induction of decision trees. Machine learning, 1:81–106, 1986.
  65. Lungcad: A clinically approved, machine learning system for lung cancer detection. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007.
  66. Semi-supervised learning with ladder networks. Advances in neural information processing systems, 28, 2015.
  67. The future of digital health with federated learning. NPJ digital medicine, 3(1):119, 2020.
  68. Honeycrisp: large-scale differentially private aggregation without a trusted core. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp.  196–210, 2019.
  69. Pain-free random differential privacy with sensitivity sampling. In International Conference on Machine Learning, pp. 2950–2959. PMLR, 2017.
  70. Healthcare data breaches: Insights and implications. Healthcare (Switzerland), 8, 2020. ISSN 22279032. doi: 10.3390/healthcare8020133.
  71. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.
  72. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2017.
  73. Short, M. On binomial quantile and proportion bounds: With applications in engineering and informatics. Communications in Statistics-Theory and Methods, 52(12):4183–4199, 2023.
  74. A co-regularization approach to semi-supervised learning with multiple views. In Proceedings of ICML workshop on learning with multiple views, volume 2005, pp.  74–79. Citeseer, 2005.
  75. Artificial intelligence aided diagnosis of chronic kidney disease. Journal of Critical Reviews, 7, 2020.
  76. Nuclear feature extraction for breast tumor diagnosis. In Biomedical image processing and biomedical visualization, volume 1905, pp.  861–870. SPIE, 1993.
  77. A formal foundation for secure remote execution of enclaves. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp.  2435–2450, 2017.
  78. Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3):e1001779, 2015.
  79. Can you really backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.
  80. A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM workshop on artificial intelligence and security, pp.  1–11, 2019. Ullrich et al. (2017) Ullrich, K., Kamp, M., Gärtner, T., Vogt, M., and Wrobel, S. Co-regularised support vector regression. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II 10, pp.  338–354. Springer, 2017. Warfield et al. (2004) Warfield, S. K., Zou, K. H., and Wells, W. M. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging, 23(7):903–921, 2004. Waters & Marlon (2018) Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ullrich, K., Kamp, M., Gärtner, T., Vogt, M., and Wrobel, S. Co-regularised support vector regression. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II 10, pp.  338–354. Springer, 2017. Warfield et al. (2004) Warfield, S. K., Zou, K. H., and Wells, W. M. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging, 23(7):903–921, 2004. Waters & Marlon (2018) Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Warfield, S. K., Zou, K. H., and Wells, W. M. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging, 23(7):903–921, 2004. Waters & Marlon (2018) Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  81. Co-regularised support vector regression. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II 10, pp.  338–354. Springer, 2017. Warfield et al. (2004) Warfield, S. K., Zou, K. H., and Wells, W. M. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging, 23(7):903–921, 2004. Waters & Marlon (2018) Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Warfield, S. K., Zou, K. H., and Wells, W. M. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging, 23(7):903–921, 2004. Waters & Marlon (2018) Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  82. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on medical imaging, 23(7):903–921, 2004. Waters & Marlon (2018) Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Waters, H. and Marlon, G. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  83. The costs of chronic disease in the u.s. Milken Institute, 2018. Wei et al. (2020) Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., and Poor, H. V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  84. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. Xiao et al. (2017) Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  85. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. Xiao et al. (2022) Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Xiao, H., Wan, J., and Devadas, S. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  86. Differentially private deep learning with modelmix. arXiv preprint arXiv:2210.03843, 2022. Zhou & Li (2005) Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhou, Z.-H. and Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  87. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005. Zhu & Han (2020) Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, L. and Han, S. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  88. Deep leakage from gradients. In Federated learning, pp.  17–31. Springer, 2020. Zhu et al. (2021) Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  89. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021. Ziller et al. (2021) Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021. Ziller, A., Usynin, D., Braren, R., Makowski, M., Rueckert, D., and Kaissis, G. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
  90. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):13524, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com