Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ethics of Artificial Intelligence and Robotics in the Architecture, Engineering, and Construction Industry (2310.05414v1)

Published 9 Oct 2023 in cs.RO and cs.AI

Abstract: AI and robotics research and implementation emerged in the architecture, engineering, and construction (AEC) industry to positively impact project efficiency and effectiveness concerns such as safety, productivity, and quality. This shift, however, warrants the need for ethical considerations of AI and robotics adoption due to its potential negative impacts on aspects such as job security, safety, and privacy. Nevertheless, this did not receive sufficient attention, particularly within the academic community. This research systematically reviews AI and robotics research through the lens of ethics in the AEC community for the past five years. It identifies nine key ethical issues namely job loss, data privacy, data security, data transparency, decision-making conflict, acceptance and trust, reliability and safety, fear of surveillance, and liability, by summarizing existing literature and filtering it further based on its AEC relevance. Furthermore, thirteen research topics along the process were identified based on existing AEC studies that had direct relevance to the theme of ethics in general and their parallels are further discussed. Finally, the current challenges and knowledge gaps are discussed and seven specific future research directions are recommended. This study not only signifies more stakeholder awareness of this important topic but also provides imminent steps towards safer and more efficient realization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (318)
  1. URL: http://marketreportsstore.com/global-construction-outlook-2020/.
  2. Human–robot collaboration in construction: Classification and research trends, Journal of Construction Engineering and Management 147 (2021) 03121006. doi:10.1061/(asce)co.1943-7862.0002154.
  3. Building information modeling: Factors affecting the adoption in the aec industry, in: 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS), IEEE, 2019, pp. 1–6. doi:10.1109/ICRIIS48246.2019.9073581.
  4. Y. Hu, D. Castro-Lacouture, Clash Relevance Prediction Based on Machine Learning, Journal of Computing in Civil Engineering 33 (2019). doi:10.1061/(ASCE)CP.1943-5487.0000810.
  5. Design of prefabricated wall-floor building systems using meta-heuristic optimization algorithms, Automation in Construction 114 (2020). doi:10.1016/j.autcon.2020.103156.
  6. Prediction of Unit Price Bids of Resurfacing Highway Projects through Ensemble Machine Learning, Journal of Computing in Civil Engineering 32 (2018). doi:10.1061/(ASCE)CP.1943-5487.0000788.
  7. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall, Automation in Construction 92 (2018) 297–311. doi:10.1016/j.autcon.2018.04.004.
  8. Real-time vision-based worker localization & hazard detection for construction, Automation in Construction 121 (2021). doi:10.1016/j.autcon.2020.103448.
  9. A vision-based marker-less pose estimation system for articulated construction robots, Automation in Construction 104 (2019) 80–94. doi:10.1016/j.autcon.2019.04.004.
  10. Recognition of High-Risk Scenarios in Building Construction Based on Image Semantics, Journal of Computing in Civil Engineering 34 (2020). doi:10.1061/(ASCE)CP.1943-5487.0000900.
  11. Automated excavators activity recognition and productivity analysis from construction site surveillance videos, Automation in Construction 110 (2020) 103045. doi:10.1016/j.autcon.2019.103045.
  12. Scene understanding for adaptive manipulation in robotized construction work, Automation in Construction 82 (2017) 16–30. doi:10.1016/j.autcon.2017.06.022.
  13. J. J. Lin, M. Golparvar-Fard, Construction Progress Monitoring Using Cyber-Physical Systems, in: C. J. Anumba, N. Roofigari-Esfahan (Eds.), Cyber-Physical Systems in the Built Environment, Springer International Publishing, Cham, 2020, pp. 63–87. doi:10.1007/978-3-030-41560-0_5.
  14. BIM-based task-level planning for robotic brick assembly through image-based 3D modeling, Advanced Engineering Informatics 43 (2020) 100993. doi:10.1016/j.aei.2019.100993.
  15. RAS: a robotic assembly system for steel structure erection and assembly, International Journal of Intelligent Robotics and Applications 1 (2017) 459–476. doi:10.1007/s41315-017-0030-x.
  16. C. H. Yang, S. C. Kang, Collision avoidance method for robotic modular home prefabrication, Automation in Construction 130 (2021). doi:10.1016/j.autcon.2021.103853.
  17. Intelligent demolition robot: Structural statics, collision detection, and dynamic control, Automation in Construction 142 (2022) 104490. doi:10.1016/j.autcon.2022.104490.
  18. Automated staff assignment for building maintenance using natural language processing, Automation in Construction 113 (2020). doi:10.1016/j.autcon.2020.103150.
  19. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction, Automation in Construction 130 (2021). doi:10.1016/j.autcon.2021.103832.
  20. An occupancy grid mapping enhanced visual slam for real-time locating applications in indoor gps-denied environments, Automation in Construction 104 (2019) 230–245. doi:10.1016/j.autcon.2019.04.011.
  21. Robotic data collection and simulation for evaluation of building retrofit performance, Automation in Construction 92 (2018) 88–102. doi:10.1016/j.autcon.2018.03.026.
  22. Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities, Automation in Construction 112 (2020). doi:10.1016/j.autcon.2020.103081.
  23. Construction automation: Research areas, industry concerns and suggestions for advancement, Automation in Construction 94 (2018) 22–38. doi:10.1016/j.autcon.2018.05.028.
  24. N. Emaminejad, R. Akhavian, Trustworthy AI and robotics: Implications for the AEC industry, Automation in Construction 139 (2022) 104298. doi:10.1016/j.autcon.2022.104298.
  25. Human–robot collaboration in construction: classification and research trends, Journal of Construction Engineering and Management 147 (2021) 03121006. doi:10.1061/(ASCE)CO.1943-7862.0002154, publisher: American Society of Civil Engineers.
  26. Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works, Visualization in Engineering 4 (2016) 1. doi:10.1186/s40327-015-0029-z.
  27. J. Torresen, A Review of Future and Ethical Perspectives of Robotics and AI, Frontiers in Robotics and AI 4 (2018). doi:10.3389/frobt.2017.00075.
  28. Ethical Aspects of Human–Robot Collaboration in Industrial Work Settings, in: M. I. Aldinhas Ferreira, S. R. Fletcher (Eds.), The 21st Century Industrial Robot: When Tools Become Collaborators, Intelligent Systems, Control and Automation: Science and Engineering, Springer International Publishing, Cham, 2022, pp. 255–266. URL: https://doi.org/10.1007/978-3-030-78513-0_14. doi:10.1007/978-3-030-78513-0_14.
  29. B. Kuipers, Perspectives on Ethics of AI: Computer Science, in: M. D. Dubber, F. Pasquale, S. Das (Eds.), The Oxford Handbook of Ethics of AI, Oxford University Press, 2020, pp. 419–441. URL: https://oxfordhandbooks.com/view/10.1093/oxfordhb/9780190067397.001.0001/oxfordhb-9780190067397-e-27. doi:10.1093/oxfordhb/9780190067397.013.27.
  30. Ethical Issues in the Construction Industry: Contractor’s Perspective, Procedia - Social and Behavioral Sciences 35 (2012) 719–727. doi:10.1016/j.sbspro.2012.02.142.
  31. Ethical behaviour in the south african construction industry, Construction management and economics 25 (2007) 631–648. doi:10.1080/01446190701225707.
  32. Impact of ethical leadership on employee turnover intentions in the construction industry, Journal of Construction Engineering and Management 148 (2022) 04022054. doi:10.1061/(ASCE)CO.1943-7862.0002303.
  33. Interrelations between construction ethics and innovation: A bibliometric analysis using vosviewer, Construction Innovation 23 (2023) 505–523. doi:10.1108/CI-07-2021-0130.
  34. Language models are unsupervised multitask learners, OpenAI blog 1 (2019) 9.
  35. Investigating the use of chatgpt for the scheduling of construction projects, Buildings 13 (2023). doi:10.3390/buildings13040857.
  36. D. Moher, Reporting guidelines: doing better for readers, BMC Medicine 16 (2018) 233. doi:10.1186/s12916-018-1226-0.
  37. Reprint—preferred reporting items for systematic reviews and meta-analyses: The prisma statement, Physical Therapy 89 (2009) 873–880. doi:10.1093/ptj/89.9.873.
  38. The prisma 2020 statement: an updated guideline for reporting systematic reviews, BMJ 372 (2021a) n71. doi:10.1136/bmj.n71.
  39. Prisma 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews, BMJ 372 (2021b) n160. doi:10.1136/bmj.n160.
  40. Prisma harms checklist: improving harms reporting in systematic reviews, BMJ 352 (2016) i157. doi:10.1136/bmj.i157.
  41. Reproducible research practices are underused in systematic reviews of biomedical interventions, Journal of Clinical Epidemiology 94 (2018) 8–18. doi:10.1016/j.jclinepi.2017.10.017.
  42. Meta-analyses indexed in psycinfo had a better completeness of reporting when they mention prisma, Journal of Clinical Epidemiology 115 (2019) 46–54. doi:10.1016/j.jclinepi.2019.06.014.
  43. J. J. Thomson, The trolley problem, The Yale Law Journal 94 (1985) 1395–1415. doi:10.2307/796133.
  44. URL: https://www.itu.int/hub/2020/10/self-driving-cars-can-ai-make-the-right-decisions-on-the-road/.
  45. M. M. A. de Graaf, An Ethical Evaluation of Human–Robot Relationships, International Journal of Social Robotics 8 (2016) 589–598. doi:10.1007/s12369-016-0368-5.
  46. Toward understanding social cues and signals in human–robot interaction: effects of robot gaze and proxemic behavior, Frontiers in Psychology 4 (2013).
  47. I. Asimov, Three laws of robotics, Runaround 2 (1942).
  48. Roboethics: Social and ethical implications, Springer handbook of robotics (2016) 2135–2160.
  49. S. E. Berger, F. Rossi, Addressing neuroethics issues in practice: Lessons learnt by tech companies in ai ethics, Neuron 110 (2022) 2052–2056. doi:10.1016/j.neuron.2022.05.006.
  50. S. Berger, F. Rossi, Ai and neurotechnology: Learning from ai ethics to address an expanded ethics landscape, Communications of ACM 66 (2023) 58–68. doi:10.1145/3529088.
  51. Explainable ai under contract and tort law: legal incentives and technical challenges, Artificial Intelligence and Law 28 (2020) 415–439.
  52. P. Hacker, J. Passoth, Varieties of ai explanations under the law. from the gdpr to the aia, and beyond, in: Proceedings of International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers, 2022, pp. 343–373.
  53. Robot ethics: Mapping the issues for a mechanized world, Artificial Intelligence 175 (2011) 942–949. doi:10.1016/j.artint.2010.11.026.
  54. G. Veruggio, The euron roboethics roadmap, in: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2006, pp. 612–617. doi:10.1109/ICHR.2006.321337.
  55. Trustworthy artificial intelligence, Electron Markets 31 (2021) 447–464. doi:10.1007/s12525-020-00441-4.
  56. Trustworthy ai: A computational perspective, ACM Transactions on Intelligent Systems and Technology 14 (2022) 1–59. doi:10.1145/3546872.
  57. URL: https://www.covidence.org.
  58. URL: http:/www.prisma-statement.org.
  59. J. Zhao, E. Obonyo, Applying incremental Deep Neural Networks-based posture recognition model for ergonomics risk assessment in construction, Advanced Engineering Informatics 50 (2021). doi:10.1016/j.aei.2021.101374.
  60. Monocular Vision-Based Framework for Biomechanical Analysis or Ergonomic Posture Assessment in Modular Construction, Journal of Computing in Civil Engineering 34 (2020). doi:10.1061/(ASCE)CP.1943-5487.0000897.
  61. Effects of dataset characteristics on the performance of fatigue detection for crane operators using hybrid deep neural networks, Automation in Construction 132 (2021). doi:10.1016/j.autcon.2021.103901.
  62. Jerk as an indicator of physical exertion and fatigue, Automation in Construction 104 (2019) 120–128. doi:10.1016/j.autcon.2019.04.016.
  63. Integrating feature engineering, genetic algorithm and tree-based machine learning methods to predict the post-accident disability status of construction workers, Automation in Construction 131 (2021). doi:10.1016/j.autcon.2021.103896.
  64. J. Seo, S. Lee, Automated postural ergonomic risk assessment using vision-based posture classification, Automation in Construction 128 (2021). doi:10.1016/j.autcon.2021.103725.
  65. Ergonomic posture recognition using 3D view-invariant features from single ordinary camera, Automation in Construction 94 (2018) 1–10. doi:10.1016/j.autcon.2018.05.033.
  66. Automated ergonomic risk monitoring using body-mounted sensors and machine learning, Advanced Engineering Informatics 38 (2018) 514–526. doi:10.1016/j.aei.2018.08.020.
  67. Identifying poses of safe and productive masons using machine learning, Automation in Construction 84 (2017) 345–355. doi:10.1016/j.autcon.2017.09.022.
  68. Monitoring fatigue in construction workers using physiological measurements, Automation in Construction 82 (2017) 154–165. doi:10.1016/j.autcon.2017.03.003.
  69. Hazard differentiation embedded in the brain: A near-infrared spectroscopy-based study, Automation in Construction 122 (2021). doi:10.1016/j.autcon.2020.103473.
  70. Real-time judgment of workload using heart rate and physical activity, in: Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC), 2020, pp. 849–856.
  71. Identification and classification of construction equipment operators’ mental fatigue using wearable eye-tracking technology, Automation in Construction 109 (2020). doi:10.1016/j.autcon.2019.103000.
  72. EEG-based workers’ stress recognition at construction sites, Automation in Construction 93 (2018) 315–324. doi:10.1016/j.autcon.2018.05.027.
  73. Predicting workers’ inattentiveness to struck-by hazards by monitoring biosignals during a construction task: A virtual reality experiment, Advanced Engineering Informatics 49 (2021). doi:10.1016/j.aei.2021.101359.
  74. M. Hu, T. Shealy, Application of functional near-infrared spectroscopy to measure engineering decision-making and design cognition: Literature review and synthesis of methods, Journal of Computing in Civil Engineering 33 (2019). doi:10.1061/(ASCE)CP.1943-5487.0000848.
  75. Brain-computer interface for hands-free teleoperation of construction robots, Automation in Construction 123 (2021a). doi:10.1016/j.autcon.2020.103523.
  76. Brainwave-driven human-robot collaboration in construction, Automation in Construction 124 (2021b) 103556. doi:10.1016/j.autcon.2021.103556, section: 103556.
  77. K. A. Boroujeni, K. Han, Perspective-Based Image-to-BIM Alignment for Automated Visual Data Collection and Construction Performance Monitoring, in: Proceedings of the ASCE International Workshop on Computing in Civil Engineering 2017, volume 2017-June, 2017, pp. 171–178. doi:10.1061/9780784480830.022.
  78. Y. Wei, B. Akinci, A vision and learning-based indoor localization and semantic mapping framework for facility operations and management, Automation in Construction 107 (2019). doi:10.1016/j.autcon.2019.102915.
  79. Self-corrective knowledge-based hybrid tracking system using BIM and multimodal sensors, Advanced Engineering Informatics 32 (2017) 126–138. doi:10.1016/j.aei.2017.02.001.
  80. B. R. Mantha, B. Garcia de Soto, Investigating the fiducial marker network characteristics for autonomous mobile indoor robot navigation using ros and gazebo, Journal of Construction Engineering and Management 148 (2022) 04022115. doi:(ASCE)CO.1943-7862.000237.
  81. Vision-based integrated mobile robotic system for real-time applications in construction, Automation in Construction 96 (2018) 470–482. doi:10.1016/j.autcon.2018.10.009.
  82. Automated localization of UAVs in gps-denied indoor construction environments using fiducial markers, in: Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), IAARC, Berlin, Germany, 2018, pp. 88–94. doi:10.22260/ISARC2018/0012.
  83. UAV-assisted autonomous mobile robot navigation for as-is 3D data collection and registration in cluttered environments, Automation in Construction 106 (2019) 102918. doi:10.1016/j.autcon.2019.102918.
  84. An integrated UGV-UAV system for construction site data collection, Automation in Construction 112 (2020) 103068. doi:10.1016/j.autcon.2019.103068.
  85. J. Kim, S. Chi, Adaptive Detector and Tracker on Construction Sites Using Functional Integration and Online Learning, Journal of Computing in Civil Engineering 31 (2017). doi:10.1061/(ASCE)CP.1943-5487.0000677.
  86. Adaptive computer vision-based 2D tracking of workers in complex environments, Automation in Construction 103 (2019) 168–184. doi:10.1016/j.autcon.2019.01.018.
  87. Recognizing people’s identity in construction sites with computer vision: A spatial and temporal attention pooling network, Advanced Engineering Informatics 42 (2019). doi:10.1016/j.aei.2019.100981.
  88. Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach, Advanced Engineering Informatics 37 (2018) 139–149. doi:10.1016/j.aei.2018.05.003.
  89. Temporal image analytics for abnormal construction activity identification, Automation in Construction 124 (2021). doi:10.1016/j.autcon.2021.103572.
  90. Virtual prototyping- and transfer learning-enabled module detection for modular integrated construction, Automation in Construction 120 (2020). doi:10.1016/j.autcon.2020.103387.
  91. Image-based onsite object recognition for automatic crane lifting tasks, Automation in Construction 123 (2021). doi:10.1016/j.autcon.2020.103527.
  92. Stacked hourglass networks for markerless pose estimation of articulated construction robots, in: Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), IAARC, Berlin, Germany, 2018, pp. 859–865. doi:10.22260/ISARC2018/0120.
  93. Full body pose estimation of construction equipment using computer vision and deep learning techniques, Automation in Construction 110 (2020). doi:10.1016/j.autcon.2019.103016.
  94. B. Xiao, S. C. Kang, Development of an Image Data Set of Construction Machines for Deep Learning Object Detection, Journal of Computing in Civil Engineering 35 (2021). doi:10.1061/(ASCE)CP.1943-5487.0000945.
  95. R. Y. Ma Li, Smart construction safety in road repairing works, in: Procedia Computer Science, volume 111, 2017, pp. 301–307. doi:10.1016/j.procs.2017.06.027.
  96. K. M. Rashid, J. Louis, Activity identification in modular construction using audio signals and machine learning, Automation in Construction 119 (2020). doi:10.1016/j.autcon.2020.103361.
  97. Real-Time Vision-Based Warning System for Prevention of Collisions between Workers and Heavy Equipment, Journal of Computing in Civil Engineering 33 (2019). doi:10.1061/(ASCE)CP.1943-5487.0000845.
  98. Proximity prediction of mobile objects to prevent contact-driven accidents in co-robotic construction, Journal of Computing in Civil Engineering 34 (2020) 04020022. doi:10.1061/(ASCE)CP.1943-5487.0000899.
  99. Improving dynamic proximity sensing and processing for smart work-zone safety, Automation in Construction 84 (2017) 111–120. doi:10.1016/j.autcon.2017.08.025.
  100. Remote proximity monitoring between mobile construction resources using camera-mounted UAVs, Automation in Construction 99 (2019) 168–182. doi:10.1016/j.autcon.2018.12.014.
  101. Convolutional neural networks: Computer vision-based workforce activity assessment in construction, Automation in Construction 94 (2018) 282–289. doi:10.1016/j.autcon.2018.06.007.
  102. D. Roberts, M. Golparvar-Fard, End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level, Automation in Construction 105 (2019). doi:10.1016/j.autcon.2019.04.006.
  103. Activity recognition of construction equipment using fractional random forest, Automation in Construction 122 (2021). doi:10.1016/j.autcon.2020.103465.
  104. Vision-based nonintrusive context documentation for earthmoving productivity simulation, Automation in Construction 102 (2019) 135–147. doi:10.1016/j.autcon.2019.02.006.
  105. Measuring and benchmarking the productivity of excavators in infrastructure projects: A deep neural network approach, Automation in Construction 124 (2021). doi:10.1016/j.autcon.2020.103532.
  106. Proactive struck-by risk detection with movement patterns and randomness, Automation in Construction 91 (2018) 246–255. doi:10.1016/j.autcon.2018.03.021.
  107. Semantic trajectory insights for worker safety in dynamic environments, Automation in Construction 106 (2019). doi:10.1016/j.autcon.2019.102854.
  108. A context-augmented deep learning approach for worker trajectory prediction on unstructured and dynamic construction sites, Advanced Engineering Informatics 46 (2020). doi:10.1016/j.aei.2020.101173.
  109. Video-Based Motion Trajectory Forecasting Method for Proactive Construction Safety Monitoring Systems, Journal of Computing in Civil Engineering 34 (2020). doi:10.1061/(ASCE)CP.1943-5487.0000923.
  110. Dynamic prediction for attitude and position in shield tunneling: A deep learning method, Automation in Construction 105 (2019). doi:10.1016/j.autcon.2019.102840.
  111. Decision support system for an intelligent operator of utility tunnel boring machines, Automation in Construction 131 (2021). doi:10.1016/j.autcon.2021.103880.
  112. 5G-based earthwork monitoring system for an unmanned bulldozer, Automation in Construction 131 (2021). doi:10.1016/j.autcon.2021.103891.
  113. Falls from heights: A computer vision-based approach for safety harness detection, Automation in Construction 91 (2018a) 53–61. doi:10.1016/j.autcon.2018.02.018.
  114. Detecting non-hardhat-use by a deep learning method from far-field surveillance videos, Automation in Construction 85 (2018b) 1–9. doi:10.1016/j.autcon.2017.09.018.
  115. Machine learning for assessing real-time safety conditions of scaffolds, in: Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), 2018, pp. 56–63. doi:10.22260/isarc2018/0008.
  116. S. Tang, M. Golparvar-Fard, Machine Learning-Based Risk Analysis for Construction Worker Safety from Ubiquitous Site Photos and Videos, Journal of Computing in Civil Engineering 35 (2021). doi:10.1061/(ASCE)CP.1943-5487.0000979.
  117. A UAS-based work zone safety monitoring system by integrating internal traffic control plan (ITCP) and automated object detection in game engine environment, Automation in Construction 128 (2021). doi:10.1016/j.autcon.2021.103736.
  118. Onsite video mining for construction hazards identification with visual relationships, Advanced Engineering Informatics 42 (2019). doi:10.1016/j.aei.2019.100966.
  119. AI-based prediction of independent construction safety outcomes from universal attributes, Automation in Construction 118 (2020). doi:10.1016/j.autcon.2020.103146.
  120. Text mining-based construction site accident classification using hybrid supervised machine learning, Automation in Construction 118 (2020). doi:10.1016/j.autcon.2020.103265.
  121. Z. Shang, Z. Shen, Real-time 3D reconstruction on construction site using visual SLAM and UAV, in: Proceedings of the Construction Research Congress (CRC), 2018, pp. 305–315. doi:10.1061/9780784481264.030.
  122. H. Kim, C. Kim, 3D as-built modeling from incomplete point clouds using connectivity relations, Automation in Construction 130 (2021). doi:10.1016/j.autcon.2021.103855.
  123. T. Czerniawski, F. Leite, Automated segmentation of RGB-D images into a comprehensive set of building components using deep learning, Advanced Engineering Informatics 45 (2020). doi:10.1016/j.aei.2020.101131.
  124. Y. Yan, J. F. Hajjar, Automated extraction of structural elements in steel girder bridges from laser point clouds, Automation in Construction 125 (2021). doi:10.1016/j.autcon.2021.103582.
  125. Interior construction state recognition with 4D BIM registered image sequences, Automation in Construction 86 (2018) 11–32. doi:10.1016/j.autcon.2017.10.027.
  126. Towards next generation cyber-physical systems and digital twins for construction, Journal of Information Technology in Construction 26 (2021) 505–525. doi:10.36680/j.itcon.2021.027.
  127. A CNN-based 3D patch registration approach for integrating sequential models in support of progress monitoring, Advanced Engineering Informatics 41 (2019). doi:10.1016/j.aei.2019.100923.
  128. On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning, Automation in Construction 110 (2020). doi:10.1016/j.autcon.2019.103012.
  129. Bayesian Inference with Markov Chain Monte Carlo-Based Numerical Approach for Input Model Updating, Journal of Computing in Civil Engineering 34 (2020). doi:10.1061/(ASCE)CP.1943-5487.0000862.
  130. An autonomous robotic platform for automatic extraction of detailed semantic models of buildings, Automation in Construction 109 (2020) 102963. doi:10.1016/j.autcon.2019.102963.
  131. Deep learning-based 3D reconstruction of scaffolds using a robot dog, Automation in Construction 134 (2022). doi:10.1016/j.autcon.2021.104092.
  132. H. Hamledari, M. Fischer, Construction payment automation using blockchain-enabled smart contracts and robotic reality capture technologies, Automation in Construction 132 (2021) 103926. doi:10.1016/j.autcon.2021.103926.
  133. Robust Pixel-Level Crack Detection Using Deep Fully Convolutional Neural Networks, Journal of Computing in Civil Engineering 33 (2019). doi:10.1061/(ASCE)CP.1943-5487.0000854.
  134. Anomaly detection of defects on concrete structures with the convolutional autoencoder, Advanced Engineering Informatics 45 (2020). doi:10.1016/j.aei.2020.101105.
  135. Investigation of steel frame damage based on computer vision and deep learning, Automation in Construction 132 (2021). doi:10.1016/j.autcon.2021.103941.
  136. Automated site-specific assessment of steel structures through integrating machine learning and fracture mechanics, Automation in Construction 133 (2022). doi:10.1016/j.autcon.2021.104022.
  137. Automatic damage detection of historic masonry buildings based on mobile deep learning, Automation in Construction 103 (2019) 53–66. doi:10.1016/j.autcon.2019.03.003.
  138. Damaged ceiling detection and localization in large-span structures using convolutional neural networks, Automation in Construction 116 (2020). doi:10.1016/j.autcon.2020.103230.
  139. Geo-registering UAV-captured close-range images to GIS-based spatial model for building façade inspections, Automation in Construction 122 (2021). doi:10.1016/j.autcon.2020.103503.
  140. Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine, Automation in Construction 78 (2017) 51–61. doi:10.1016/j.autcon.2017.01.019.
  141. Tunnel structural inspection and assessment using an autonomous robotic system, Automation in Construction 87 (2018) 117–126. doi:10.1016/j.autcon.2017.12.001.
  142. Deep Learning-Based Fully Automated Pavement Crack Detection on 3D Asphalt Surfaces with an Improved CrackNet, Journal of Computing in Civil Engineering 32 (2018). doi:10.1061/(ASCE)CP.1943-5487.0000775.
  143. Road surface damage detection based on hierarchical architecture using lightweight auto-encoder network, Automation in Construction 130 (2021). doi:10.1016/j.autcon.2021.103833.
  144. Wood defects classification using laws texture energy measures and supervised learning approach, Advanced Engineering Informatics 34 (2017) 125–135. doi:10.1016/j.aei.2017.09.007.
  145. Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks, Automation in Construction 91 (2018) 273–283. doi:10.1016/j.autcon.2018.03.028.
  146. A defect classification methodology for sewer image sets with convolutional neural networks, Automation in Construction 104 (2019) 281–298. doi:10.1016/j.autcon.2019.04.013.
  147. Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning, Automation in Construction 125 (2021). doi:10.1016/j.autcon.2021.103606.
  148. Deep learning-based automatic volumetric damage quantification using depth camera, Automation in Construction 99 (2019) 114–124. doi:10.1016/j.autcon.2018.12.006.
  149. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network, Automation in Construction 109 (2020). doi:10.1016/j.autcon.2019.102994.
  150. Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures, Automation in Construction 130 (2021). doi:10.1016/j.autcon.2021.103831.
  151. A semi-autonomous mobile robot for bridge inspection, Automation in Construction 91 (2018) 111–119. doi:10.1016/j.autcon.2018.02.013.
  152. Automated Defect Quantification in Concrete Bridges Using Robotics and Deep Learning, Journal of Computing in Civil Engineering 34 (2020). doi:10.1061/(ASCE)CP.1943-5487.0000915.
  153. Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles, Automation in Construction 89 (2018) 49–57. doi:10.1016/j.autcon.2018.01.005.
  154. Bridge Inspection with Aerial Robots: Automating the Entire Pipeline of Visual Data Capture, 3D Mapping, Defect Detection, Analysis, and Reporting, Journal of Computing in Civil Engineering 35 (2021). doi:10.1061/(ASCE)CP.1943-5487.0000954.
  155. Inspection of surface defects on stay cables using a robot and transfer learning, Automation in Construction 119 (2020). doi:10.1016/j.autcon.2020.103382.
  156. B. Guldur Erkal, J. F. Hajjar, Laser-based surface damage detection and quantification using predicted surface properties, Automation in Construction 83 (2017) 285–302. doi:10.1016/j.autcon.2017.08.004.
  157. Adaptive wavelet neural network for terrestrial laser scanner-based crack detection, Automation in Construction 94 (2018) 191–202. doi:10.1016/j.autcon.2018.06.017.
  158. Computer vision-based concrete crack detection using U-net fully convolutional networks, Automation in Construction 104 (2019) 129–139. doi:10.1016/j.autcon.2019.04.005.
  159. Inspection-while-flying: An autonomous contact-based nondestructive test using UAV-tools, Automation in Construction 106 (2019). doi:10.1016/j.autcon.2019.102895.
  160. UAV payload with collision mitigation for contact inspection, Automation in Construction 115 (2020) 103200. doi:10.1016/j.autcon.2020.103200.
  161. T. C. Huynh, Vision-based autonomous bolt-looseness detection method for splice connections: Design, lab-scale evaluation, and field application, Automation in Construction 124 (2021). doi:10.1016/j.autcon.2021.103591.
  162. Y. Kardovskyi, S. Moon, Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision, Automation in Construction 130 (2021). doi:10.1016/j.autcon.2021.103850.
  163. Rapid safety monitoring and analysis of foundation pit construction using unmanned aerial vehicle images, Automation in Construction 128 (2021). doi:10.1016/j.autcon.2021.103706.
  164. Feasibility study for drone-based masonry construction of real-scale structures, Automation in Construction 94 (2018) 458–480. doi:10.1016/j.autcon.2018.06.015.
  165. T. Bruckmann, R. Boumann, Simulation and optimization of automated masonry construction using cable robots, Advanced Engineering Informatics 50 (2021). doi:10.1016/j.aei.2021.101388.
  166. Teaching robots to perform quasi-repetitive construction tasks through human demonstration, Automation in Construction 120 (2020) 103370. doi:10.1016/j.autcon.2020.103370.
  167. Trajectory-based skill learning for overhead construction robots using generalized cylinders with orientation, Journal of Computing in Civil Engineering 36 (2022) 04021036. doi:10.1061/(ASCE)CP.1943-5487.0001004, publisher: American Society of Civil Engineers.
  168. Automated re-prefabrication system for buildings using robotics, Automation in Construction 83 (2017) 184–195. doi:10.1016/j.autcon.2017.08.002.
  169. Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: A real scale architectural demonstrator, Automation in Construction 115 (2020) 103197. doi:10.1016/j.autcon.2020.103197.
  170. Flexible and transportable robotic timber construction platform – TIM, Automation in Construction 120 (2020). doi:10.1016/j.autcon.2020.103400.
  171. Robotic assembly of timber joints using reinforcement learning, Automation in Construction 125 (2021). doi:10.1016/j.autcon.2021.103569.
  172. Large-scale 3D printing by a team of mobile robots, Automation in Construction 95 (2018) 98–106. doi:10.1016/j.autcon.2018.08.004.
  173. O. Kontovourkis, G. Tryfonos, Robotic 3D clay printing of prefabricated non-conventional wall components based on a parametric-integrated design, Automation in Construction 110 (2020) 103005. doi:10.1016/j.autcon.2019.103005.
  174. Autonomous anchoring for robotic construction, Automation in Construction 120 (2020). doi:10.1016/j.autcon.2020.103391.
  175. Robotic binding of rebar based on active perception and planning, Automation in Construction 132 (2021) 103939. doi:10.1016/j.autcon.2021.103939.
  176. Automated fabrication of reinforcement cages using a robotized production cell, Automation in Construction 133 (2022). doi:10.1016/j.autcon.2021.103990.
  177. Developing a climbing robot for repairing cables of cable-stayed bridges, Automation in Construction 129 (2021). doi:10.1016/j.autcon.2021.103807.
  178. Enhancing perceived safety in human–robot collaborative construction using immersive virtual environments, Automation in Construction 96 (2018) 161–170. doi:10.1016/j.autcon.2018.09.008.
  179. Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection, Automation in Construction 81 (2017) 25–33. doi:10.1016/j.autcon.2017.04.013.
  180. Autonomous motion planning and task execution in geometrically adaptive robotized construction work, Automation in Construction 100 (2019) 24–45. doi:10.1016/j.autcon.2018.12.020.
  181. Complete coverage path planning using reinforcement learning for Tetromino based cleaning and maintenance robot, Automation in Construction 112 (2020). doi:10.1016/j.autcon.2020.103078.
  182. A practicality and safety-oriented approach for path planning in crane lifts, Automation in Construction 127 (2021). doi:10.1016/j.autcon.2021.103695.
  183. Neurobehavioral assessment of force feedback simulation in industrial robotic teleoperation, Automation in Construction 126 (2021). doi:10.1016/j.autcon.2021.103674.
  184. Teleoperated service robotic system for on-site surface rust removal and protection of high-rise exterior gas pipes, Automation in Construction 125 (2021). doi:10.1016/j.autcon.2021.103609.
  185. Autonomous trenching with hierarchically organized primitives, Automation in Construction 98 (2019) 214–224. doi:10.1016/j.autcon.2018.11.016.
  186. Field test of neural-network based automatic bucket-filling algorithm for wheel-loaders, Automation in Construction 97 (2019) 1–12. doi:10.1016/j.autcon.2018.10.013.
  187. N. H. C. Guzman, A. G. Mezovari, Design of IoT-based cyber-physical systems: A driverless bulldozer prototype, Information (Switzerland) 10 (2019). doi:10.3390/info10110343.
  188. A framework for brain learning-based control of smart structures, Advanced Engineering Informatics 42 (2019). doi:10.1016/j.aei.2019.100986.
  189. D. Lee, M. Kim, Autonomous construction hoist system based on deep reinforcement learning in high-rise building construction, Automation in Construction 128 (2021). doi:10.1016/j.autcon.2021.103737.
  190. Interactive and immersive process-level digital twin for collaborative human–robot construction work, Journal of Computing in Civil Engineering 35 (2021) 04021023. doi:10.1061/(ASCE)CP.1943-5487.0000988, publisher: American Society of Civil Engineers.
  191. Bi-directional communication bridge for state synchronization between digital twin simulations and physical construction robots, in: Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), IAARC, Kitakyushu, Japan (Online), 2020, pp. 1480–1487. URL: http://www.iaarc.org/publications/2020_proceedings_of_the_37th_isarc/bi_directional_communication_bridge_for_state_synchronization_between_digital_twin_simulations_and_physical_construction_robots.html. doi:10.22260/ISARC2020/0205.
  192. Federated transfer learning enabled smart work packaging for preserving personal image information of construction worker, Automation in Construction 128 (2021). doi:10.1016/j.autcon.2021.103738.
  193. Blockchain-aided information exchange records for design liability control and improved security, Automation in Construction 126 (2021). doi:10.1016/j.autcon.2021.103667.
  194. Coordinating multi-site construction projects using federated clouds, Automation in Construction 83 (2017) 273–284. doi:10.1016/j.autcon.2017.08.011.
  195. Cup-of-Water theory: A review on the interaction of BIM, IoT and blockchain during the whole building lifecycle, in: Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), 2018, pp. 478–486. doi:10.22260/isarc2018/0066.
  196. Exploring smart construction objects as blockchain oracles in construction supply chain management, Automation in Construction 129 (2021). doi:10.1016/j.autcon.2021.103816.
  197. A systemic framework for addressing cybersecurity in construction, Automation in Construction 133 (2022). doi:10.1016/j.autcon.2021.103988.
  198. E. Karaturk, E. Kocyigit, Security Concepts in Smart Cities, in: Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020, pp. 1–7. doi:10.1109/HORA49412.2020.9152605.
  199. M. B. Hatoum, H. Nassereddine, Developing a framework for the implementation of robotics in construction enterprises, in: Proceedings of the EG-ICE 2020 Workshop on Intelligent Computing in Engineering, 2020, pp. 453–462.
  200. The introduction of AI in the construction industry and its impact on human behavior, in: Proceedings of the 27th Annual Conference of the International Group for Lean Construction (IGLC), 2019, pp. 903–914. doi:10.24928/2019/0191.
  201. J. B. Van Ameijde, Generative architectural design and build strategies based on the mapping of human behaviour, in: Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), 2018, pp. 546–553. doi:10.22260/ISARC2018/0075.
  202. Combining context-aware design-specific data and building performance models to improve building performance predictions during design, Automation in Construction 107 (2019). doi:10.1016/j.autcon.2019.102917.
  203. M. Mangal, J. C. P. Cheng, Automated optimization of steel reinforcement in RC building frames using building information modeling and hybrid genetic algorithm, Automation in Construction 90 (2018) 39–57. doi:10.1016/j.autcon.2018.01.013.
  204. E. Karan, S. Asadi, Intelligent designer: A computational approach to automating design of windows in buildings, Automation in Construction 102 (2019) 160–169. doi:10.1016/j.autcon.2019.02.019.
  205. A. Agirbas, Façade form-finding with swarm intelligence, Automation in Construction 99 (2019) 140–151. doi:10.1016/j.autcon.2018.12.003.
  206. Automated generation of dimensioned rectangular floorplans, Automation in Construction 113 (2020). doi:10.1016/j.autcon.2020.103149.
  207. Optimal brick layout of masonry walls based on intelligent evolutionary algorithm and building information modeling, Automation in Construction 129 (2021). doi:10.1016/j.autcon.2021.103824.
  208. R. K. Soman, M. Molina-Solana, Automating look-ahead schedule generation for construction using linked-data based constraint checking and reinforcement learning, Automation in Construction 134 (2022). doi:10.1016/j.autcon.2021.104069.
  209. M. Bilal, L. O. Oyedele, Guidelines for applied machine learning in construction industry—A case of profit margins estimation, Advanced Engineering Informatics 43 (2020). doi:10.1016/j.aei.2019.101013.
  210. Integration of support vector regression and grey wolf optimization for estimating the ultimate bearing capacity in concrete-filled steel tube columns, Neural Computing and Applications (2021). doi:10.1007/s00521-020-05605-z.
  211. J. Zhang, N. M. El-Gohary, Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking, Automation in Construction 73 (2017) 45–57. doi:10.1016/j.autcon.2016.08.027.
  212. Using support vector machines to classify building elements for checking the semantic integrity of building information models, Automation in Construction 98 (2019) 183–194. doi:10.1016/j.autcon.2018.11.015.
  213. M. Raoufi, A. R. Fayek, Fuzzy Agent-Based Modeling of Construction Crew Motivation and Performance, Journal of Computing in Civil Engineering 32 (2018). doi:10.1061/(ASCE)CP.1943-5487.0000777.
  214. Machine learning and BIM visualization for maintenance issue classification and enhanced data collection, Advanced Engineering Informatics 38 (2018) 101–112. doi:10.1016/j.aei.2018.06.007.
  215. Maintenance intervention predictions using entity-embedding neural networks, Automation in Construction 116 (2020). doi:10.1016/j.autcon.2020.103202.
  216. ‘Cognitive facility management’: Definition, system architecture, and example scenario, Automation in Construction 107 (2019). doi:10.1016/j.autcon.2019.102922.
  217. A blockchain-based integrated document management framework for construction applications, Automation in Construction 133 (2022). doi:10.1016/j.autcon.2021.104001.
  218. Framework for automated registration of UAV and UGV point clouds using local features in images, Automation in Construction 98 (2019) 175–182. doi:10.1016/j.autcon.2018.11.024.
  219. A vision-based approach for automatic progress tracking of floor paneling in offsite construction facilities, Automation in Construction 125 (2021). doi:10.1016/j.autcon.2021.103620.
  220. Mapping and localization module in a mobile robot for insulating building crawl spaces, Automation in Construction 87 (2018) 248–262. doi:10.1016/j.autcon.2017.11.007.
  221. Localisation of a mobile robot for bridge bearing inspection, Automation in Construction 94 (2018) 244–256. doi:10.1016/j.autcon.2018.07.003.
  222. Framework for automated UAS-based structural condition assessment of bridges, Automation in Construction 97 (2019) 77–95. doi:10.1016/j.autcon.2018.10.006.
  223. On-site autonomous construction robots: Towards unsupervised building, Automation in Construction 119 (2020) 103312. doi:10.1016/j.autcon.2020.103312.
  224. Design and assembly automation of the Robotic Reversible Timber Beam, Automation in Construction 123 (2021). doi:10.1016/j.autcon.2020.103531.
  225. Task planning strategy and path similarity analysis for an autonomous excavator, Automation in Construction 112 (2020). doi:10.1016/j.autcon.2020.103108.
  226. Evaluating the performance of e-construction tools in highway resurfacing projects, in: Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC), 2019, pp. 274–281. doi:10.22260/isarc2019/0037.
  227. Impact of artificial intelligence in South African construction project management industry, in: Proceedings of the International Conference on Industrial Engineering and Operations Management, 2021, pp. 148–162.
  228. Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring, Advanced Engineering Informatics 42 (2019). doi:10.1016/j.aei.2019.100991.
  229. Automated Pavement Patch Detection and Quantification Using Support Vector Machines, Journal of Computing in Civil Engineering 32 (2018). doi:10.1061/(ASCE)CP.1943-5487.0000724.
  230. Image Processing-Based Classification of Asphalt Pavement Cracks Using Support Vector Machine Optimized by Artificial Bee Colony, Journal of Computing in Civil Engineering 32 (2018). doi:10.1061/(ASCE)CP.1943-5487.0000781.
  231. C. V. Dung, L. D. Anh, Autonomous concrete crack detection using deep fully convolutional neural network, Automation in Construction 99 (2019) 52–58. doi:10.1016/j.autcon.2018.11.028.
  232. Envisioning the future of work to safeguard the safety, health, and well-being of the workforce: A perspective from the cdc’s national institute for occupational safety and health, American Journal of Industrial Medicine 63 (2020) 1065–1084. doi:https://doi.org/10.1002/ajim.23183.
  233. Delegation or Collaboration: Understanding Different Construction Stakeholders’ Perceptions of Robotization, Journal of Management in Engineering 38 (2022) 04021084. doi:10.1061/(asce)me.1943-5479.0000994.
  234. Dynamic Human-Robot Role Allocation based on Human Ergonomics Risk Prediction and Robot Actions Adaptation, arXiv:2111.03630 [cs] (2021). ArXiv: 2111.03630.
  235. X. Zhang, X. Ming, Implementation path and reference framework for Industrial Internet Platform (IIP) in product service system using industrial practice investigation method, Advanced Engineering Informatics 51 (2022). doi:10.1016/j.aei.2021.101481.
  236. BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction, Automation in Construction 134 (2022). doi:10.1016/j.autcon.2021.104054.
  237. Assessing future landscapes using enhanced mixed reality with semantic segmentation by deep learning, Advanced Engineering Informatics 48 (2021). doi:10.1016/j.aei.2021.101281.
  238. Data-driven order correlation pattern and storage location assignment in robotic mobile fulfillment and process automation system, Advanced Engineering Informatics 50 (2021). doi:10.1016/j.aei.2021.101369.
  239. Quantifying the physical intensity of construction workers, a mechanical energy approach, Advanced Engineering Informatics 38 (2018) 404–419. doi:10.1016/j.aei.2018.08.005.
  240. Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites, Journal of Computing in Civil Engineering 33 (2019). doi:10.1061/(ASCE)CP.1943-5487.0000813.
  241. Distress Recognition in Unpaved Roads Using Unmanned Aerial Systems and Deep Learning Segmentation, Journal of Computing in Civil Engineering 35 (2021). doi:10.1061/(ASCE)CP.1943-5487.0000952.
  242. K. Yang, C. R. Ahn, Inferring workplace safety hazards from the spatial patterns of workers’ wearable data, Advanced Engineering Informatics 41 (2019). doi:10.1016/j.aei.2019.100924.
  243. J. Cai, H. Cai, Robust Hybrid Approach of Vision-Based Tracking and Radio-Based Identification and Localization for 3D Tracking of Multiple Construction Workers, Journal of Computing in Civil Engineering 34 (2020). doi:10.1061/(ASCE)CP.1943-5487.0000901.
  244. Fusion of blockchain and artificial intelligence for secure drone networking underlying 5G communications, Transactions on Emerging Telecommunications Technologies 32 (2021). doi:10.1002/ett.4176.
  245. O. Olatunji, A preliminary review on the legal implications of BIM and model ownership, Journal of Information Technology in Construction 16 (2011) 687–696.
  246. Federated Learning for Data Privacy Preservation in Vehicular Cyber-Physical Systems, IEEE Network 34 (2020) 50–56. doi:10.1109/MNET.011.1900317.
  247. Blockchain technology overview, arXiv preprint arXiv:1906.11078 (2019).
  248. Blockchain challenges and opportunities: A survey, International journal of web and grid services 14 (2018) 352–375.
  249. A blockchain-based edge collaborative detection scheme for construction internet of things, Automation in Construction 134 (2022). doi:10.1016/j.autcon.2021.104066.
  250. Ai4people—an ethical framework for a good ai society: opportunities, risks, principles, and recommendations, Minds and machines 28 (2018) 689–707.
  251. N. Diakopoulos, Transparency, in: The Oxford Handbook of Ethics of AI, Oxford University Press, 2020, pp. 197–213. doi:10.1093/oxfordhb/9780190067397.013.11.
  252. Trust and fairness in ai systems, in: An Introduction to Ethics in Robotics and AI, Springer, 2021, pp. 27–38.
  253. D. Susser, Invisible influence: Artificial intelligence and the ethics of adaptive choice architectures, in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES), 2019, pp. 403–408. doi:10.1145/3306618.3314286.
  254. A. Adadi, M. Berrada, Peeking inside the black-box: A survey on explainable artificial intelligence (xai), IEEE Access 6 (2018) 52138–52160. doi:10.1109/ACCESS.2018.2870052.
  255. F. Cantucci, R. Falcone, Towards trustworthiness and transparency in social human-robot interaction, in: Proceedings of the 2020 IEEE International Conference on Human-Machine Systems (ICHMS), 2020, pp. 1–6. doi:10.1109/ICHMS49158.2020.9209397.
  256. B. Weber-Lewerenz, Corporate digital responsibility (CDR) in construction engineering—ethical guidelines for the application of digital transformation and artificial intelligence (AI) in user practice, SN Applied Sciences 3 (2021). doi:10.1007/s42452-021-04776-1.
  257. Cloud computing in construction industry: Use cases, benefits and challenges, Automation in Construction 122 (2021). doi:10.1016/j.autcon.2020.103441.
  258. Explainable artificial intelligence: Precepts, methods, and opportunities for research in construction, arXiv preprint arXiv:2211.06579 (2022a). doi:10.48550/arXiv.2211.06579.
  259. Explainable artificial intelligence in construction: The content, context, process, outcome evaluation framework, arXiv preprint arXiv:2211.06561 (2022b). doi:10.48550/arXiv.2211.06561.
  260. D. Liang, F. Xue, Integrating automated machine learning and interpretability analysis in architecture, engineering and construction industry: A case of identifying failure modes of reinforced concrete shear walls, Computers in Industry 147 (2023) 103883. doi:10.1016/j.compind.2023.103883.
  261. Emerging Applications of Artificial Intelligence in Structural Engineering and Construction Industry, in: Proceedings of the International Conference on Mechatronics and Artificial Intelligence (ICMAI), volume 1950, 2021, p. 012062. doi:10.1088/1742-6596/1950/1/012062.
  262. Knowledge-based system for resolving design clashes in building information models, Automation in Construction 110 (2020). doi:10.1016/j.autcon.2019.103001.
  263. Machine learning predictive model based on national data for fatal accidents of construction workers, Automation in Construction 110 (2020). doi:10.1016/j.autcon.2019.102974.
  264. Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression, Automation in Construction 129 (2021). doi:10.1016/j.autcon.2021.103827.
  265. Trajectory adaptation for an impedance controlled cooperative robot according to an operator’s force, Automation in Construction 103 (2019) 213–220. doi:10.1016/j.autcon.2019.01.006.
  266. Heavy mobile crane lift path planning in congested modular industrial plants using a robotics approach, Automation in Construction 122 (2021). doi:10.1016/j.autcon.2020.103508.
  267. Optimal Strategy to mitigate tunnel-induced settlement in soft soils: Simulation approach, Journal of Performance of Constructed Facilities 33 (2019). doi:10.1061/(ASCE)CF.1943-5509.0001322.
  268. A novel construction cost prediction model using hybrid natural and light gradient boosting, Advanced Engineering Informatics 46 (2020). doi:10.1016/j.aei.2020.101201.
  269. Y. Pan, L. Zhang, BIM log mining: Learning and predicting design commands, Automation in Construction 112 (2020). doi:10.1016/j.autcon.2020.103107.
  270. D. Vanderelst, A. Winfield, The Dark Side of Ethical Robots, in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2018, pp. 317–322. doi:10.1145/3278721.3278726.
  271. G. Charalambous, S. R. Fletcher, Trust in Industrial Human–Robot Collaboration, in: M. I. Aldinhas Ferreira, S. R. Fletcher (Eds.), The 21st Century Industrial Robot: When Tools Become Collaborators, Intelligent Systems, Control and Automation: Science and Engineering, Springer International Publishing, Cham, 2022, pp. 87–103. URL: https://doi.org/10.1007/978-3-030-78513-0_6. doi:10.1007/978-3-030-78513-0_6.
  272. The Development of a Scale to Evaluate Trust in Industrial Human-robot Collaboration, International Journal of Social Robotics 8 (2016) 193–209. doi:10.1007/s12369-015-0333-8, section: 193.
  273. Toward Quantifying Trust Dynamics: How People Adjust Their Trust After Moment-to-Moment Interaction With Automation, Human Factors (2021) 00187208211034716. doi:10.1177/00187208211034716.
  274. Y. Guo, X. J. Yang, Modeling and Predicting Trust Dynamics in Human–Robot Teaming: A Bayesian Inference Approach, International Journal of Social Robotics 13 (2020) 1899–1909. doi:10.1007/s12369-020-00703-3.
  275. Measuring Trust with Psychophysiological Signals: A Systematic Mapping Study of Approaches Used, Multimodal Technologies and Interaction 4 (2020) 63.
  276. S. K. Hopko, R. K. Mehta, Trust in shared-space collaborative robots: Shedding light on the human brain, Human Factors (2022) 00187208221109039. doi:10.1177/00187208221109039.
  277. Workers’ trust in collaborative construction robots: Eeg-based trust recognition in an immersive environment, in: H. Jebelli, M. Habibnezhad, S. Shayesteh, S. Asadi, S. Lee (Eds.), Automation and Robotics in the Architecture, Engineering, and Construction Industry, Springer International Publishing, 2022, pp. 201–215. doi:10.1007/978-3-030-77163-8_10.
  278. T. Le, S. Shetty, Artificial intelligence-aided privacy preserving trustworthy computation and communication in 5G-based IoT networks, Ad Hoc Networks 126 (2022). doi:10.1016/j.adhoc.2021.102752.
  279. S. Paneru, I. Jeelani, Computer vision applications in construction: Current state, opportunities & challenges, Automation in Construction 132 (2021). doi:10.1016/j.autcon.2021.103940.
  280. Computer vision techniques in construction: a critical review, Archives of Computational Methods in Engineering 28 (2021) 3383–3397. doi:10.1007/s11831-020-09504-3.
  281. Dataset and benchmark for detecting moving objects in construction sites, Automation in Construction 122 (2021). doi:10.1016/j.autcon.2020.103482.
  282. Computer vision for behaviour-based safety in construction: A review and future directions, Advanced Engineering Informatics 43 (2020a). doi:10.1016/j.aei.2019.100980.
  283. Computer vision applications in construction safety assurance, Automation in Construction 110 (2020b). doi:10.1016/j.autcon.2019.103013.
  284. Interpretable convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8827–8836. doi:10.1109/CVPR.2018.00920.
  285. Deep learning in the construction industry: A review of present status and future innovations, Journal of Building Engineering 32 (2020) 101827. doi:10.1016/j.jobe.2020.101827.
  286. M. Z. Naser, An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference, Automation in Construction 129 (2021). doi:10.1016/j.autcon.2021.103821.
  287. ”why should i trust you?” explaining the predictions of any classifier, in: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1135–1144.
  288. S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Advances in neural information processing systems, volume 30, 2017, pp. 4768–4777. doi:10.48550/arXiv.1705.07874.
  289. Grad-cam: Visual explanations from deep networks via gradient-based localization, International Journal of Computer Vision 128 (2020) 336–359. doi:10.1007/s11263-019-01228-7.
  290. An autonomous excavator system for material loading tasks, Science Robotics 6 (2021) eabc3164. doi:10.1126/scirobotics.abc3164.
  291. Autonomous free-form trenching using a walking excavator, IEEE Robotics and Automation Letters 4 (2019) 3208–3215. doi:10.1109/LRA.2019.2925758.
  292. R. J. Sandzimier, H. H. Asada, A data-driven approach to prediction and optimal bucket-filling control for autonomous excavators, IEEE Robotics and Automation Letters 5 (2020) 2682–2689. doi:10.1109/LRA.2020.2969944.
  293. F. E. Sotiropoulos, H. H. Asada, A model-free extremum-seeking approach to autonomous excavator control based on output power maximization, IEEE Robotics and Automation Letters 4 (2019) 1005–1012. doi:10.1109/LRA.2019.2893690.
  294. F. E. Sotiropoulos, H. H. Asada, Autonomous excavation of rocks using a gaussian process model and unscented kalman filter, IEEE Robotics and Automation Letters 5 (2020) 2491–2497. doi:10.1109/LRA.2020.2972891.
  295. H. Son, C. Kim, Integrated worker detection and tracking for the safe operation of construction machinery, Automation in Construction 126 (2021). doi:10.1016/j.autcon.2021.103670.
  296. B. Xiao, S. C. Kang, Vision-Based Method Integrating Deep Learning Detection for Tracking Multiple Construction Machines, Journal of Computing in Civil Engineering 35 (2021). doi:10.1061/(ASCE)CP.1943-5487.0000957.
  297. Real-time smart video surveillance to manage safety: A case study of a transport mega-project, Advanced Engineering Informatics 45 (2020). doi:10.1016/j.aei.2020.101100.
  298. A real-time control approach based on intelligent video surveillance for violations by construction workers, Journal of Civil Engineering and Management 24 (2018) 67–78.
  299. Violation monitoring system for power construction site, in: IOP Conference Series: Earth and Environmental Science, volume 234, IOP Publishing, 2019, p. 012062.
  300. Deep learning-based substation remote construction management and ai automatic violation detection system, IET Generation, Transmission & Distribution 16 (2022) 1714–1726.
  301. Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks, Automation in Construction 99 (2019) 27–38. doi:10.1016/j.autcon.2018.11.033.
  302. S. Nishigaki, K. Saibara, Infographics on unmanned dozer operation, 2019, pp. 696–703. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071445505&doi=10.22260%2fisarc2019%2f0093&partnerID=40&md5=b1c57284e3b449c9db07d0907b4136ea. doi:10.22260/isarc2019/0093.
  303. An inventory of creative spaces: Innovative organizations and their workspace, in: Proceedings of the Design Society: International Conference on Engineering Design, volume 1, Cambridge University Press, 2019, pp. 39–48.
  304. Supervisor–worker relationship dynamics for workplace violence prevention in public sector human service organizations, Human Service Organizations: Management, Leadership & Governance 45 (2021) 109–124. doi:10.1080/23303131.2021.1891169.
  305. C. A. Tschider, Regulating the internet of things: Discrimination, privacy, and cybersecurity in the artificial intelligence age, Denver Law Review 96 (2018) 87–143.
  306. E. A. Parn, D. Edwards, Cyber threats confronting the digital built environment: Common data environment vulnerabilities and block chain deterrence, Engineering, Construction and Architectural Management (2019).
  307. T. Dounas, D. Lombardi, A cad-blockchain integration strategy for distributed validated digital design-connecting the blockchain, in: Proceedings of the Education and Research in Computer Aided Architectural Design in Europe Conference (eCAADe), CumInCAD, 2018, pp. 223–230. doi:10.52842/conf.ecaade.2018.1.223.
  308. bcbim: A blockchain-based big data model for bim modification audit and provenance in mobile cloud, Mathematical Problems in Engineering 2019 (2019).
  309. Blockchain and the built environment, Arup Group Limited, London (2019).
  310. Challenges, tasks, and opportunities in teleoperation of excavator toward human-in-the-loop construction automation, Automation in Construction 135 (2022) 104119. doi:10.1016/j.autcon.2021.104119.
  311. URL: https://www.enr.com/articles/54728-cybersecurity-threats-drive-aec-firms-to-better-data-practices.
  312. B. R. Mantha, B. Garcia de Soto, Cybersecurity in construction: Where do we stand and how do we get better prepared, Frontiers in Built Environment 7 (2021) 612668. doi:10.3389/fbuil.2021.612668.
  313. Cyber security threat modeling in the aec industry: An example for the commissioning of the built environment, Sustainable Cities and Society 66 (2021) 102682. doi:10.1016/j.scs.2020.102682.
  314. B. R. Mantha, B. García de Soto, Assessment of the cybersecurity vulnerability of construction networks, Engineering, Construction and Architectural Management 28 (2021) 3078–3105. doi:10.1108/ECAM-06-2020-0400.
  315. Understanding the significance of cybersecurity in the construction industry: Survey findings, Journal of Construction Engineering and Management 148 (2022a) 04022095. doi:10.1061/(ASCE)CO.1943-7862.0002344.
  316. Construction cybersecurity and critical infrastructure protection: new horizons for construction 4.0, Journal of Information Technology in Construction (ITcon) 27 (2022b) 571–594. doi:10.36680/j.itcon.2022.028.
  317. Cybersecurity for digital manufacturing, Journal of manufacturing systems 48 (2018) 3–12. doi:10.1016/j.jmsy.2018.03.006.
  318. OSHA, Industrial Robot Systems and Industrial Robot System Safety, in: OSHA Technical Manual (OTM), 2021. URL: https://www.osha.gov/otm/section-4-safety-hazards/chapter-4#app-hazards.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Ci-Jyun Liang (1 paper)
  2. Thai-Hoa Le (1 paper)
  3. Youngjib Ham (2 papers)
  4. Bharadwaj R. K. Mantha (1 paper)
  5. Marvin H. Cheng (1 paper)
  6. Jacob J. Lin (2 papers)
Citations (18)