Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetrical Linguistic Feature Distillation with CLIP for Scene Text Recognition (2310.04999v2)

Published 8 Oct 2023 in cs.CV

Abstract: In this paper, we explore the potential of the Contrastive Language-Image Pretraining (CLIP) model in scene text recognition (STR), and establish a novel Symmetrical Linguistic Feature Distillation framework (named CLIP-OCR) to leverage both visual and linguistic knowledge in CLIP. Different from previous CLIP-based methods mainly considering feature generalization on visual encoding, we propose a symmetrical distillation strategy (SDS) that further captures the linguistic knowledge in the CLIP text encoder. By cascading the CLIP image encoder with the reversed CLIP text encoder, a symmetrical structure is built with an image-to-text feature flow that covers not only visual but also linguistic information for distillation.Benefiting from the natural alignment in CLIP, such guidance flow provides a progressive optimization objective from vision to language, which can supervise the STR feature forwarding process layer-by-layer.Besides, a new Linguistic Consistency Loss (LCL) is proposed to enhance the linguistic capability by considering second-order statistics during the optimization. Overall, CLIP-OCR is the first to design a smooth transition between image and text for the STR task.Extensive experiments demonstrate the effectiveness of CLIP-OCR with 93.8% average accuracy on six popular STR benchmarks.Code will be available at https://github.com/wzx99/CLIPOCR.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zixiao Wang (25 papers)
  2. Hongtao Xie (48 papers)
  3. Yuxin Wang (132 papers)
  4. Jianjun Xu (21 papers)
  5. Boqiang Zhang (11 papers)
  6. Yongdong Zhang (119 papers)
Citations (12)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub