Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
248 tokens/sec
2000 character limit reached

Kawasaki dynamics beyond the uniqueness threshold (2310.04609v2)

Published 6 Oct 2023 in math.PR, cs.DS, math-ph, and math.MP

Abstract: Glauber dynamics of the Ising model on a random regular graph is known to mix fast below the tree uniqueness threshold and exponentially slowly above it. We show that Kawasaki dynamics of the canonical ferromagnetic Ising model on a random $d$-regular graph mixes fast beyond the tree uniqueness threshold when $d$ is large enough (and conjecture that it mixes fast up to the tree reconstruction threshold for all $d\geq 3$). This result follows from a more general spectral condition for (modified) log-Sobolev inequalities for conservative dynamics of Ising models. The proof of this condition in fact extends to perturbations of distributions with log-concave generating polynomial.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Sampling from the Sherrington-Kirkpatrick Gibbs measure via algorithmic stochastic localization. 2022.
  2. Log-concave polynomials, I: entropy and a deterministic approximation algorithm for counting bases of matroids. Duke Math. J., 170(16):3459–3504, 2021.
  3. Entropic Independence I: Modified Log-Sobolev Inequalities for Fractionally Log-Concave Distributions and High-Temperature Ising Models. 2021. Preprint, arXiv:2106.04105.
  4. Log-concave polynomials III: Mason’s ultra-log-concavity conjecture for independent sets of matroids, 2018.
  5. Spectral independence in high-dimensional expanders and applications to the hardcore model. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, pages 1319–1330. IEEE Computer Soc., Los Alamitos, CA, 2020.
  6. R. Bauerschmidt and T. Bodineau. A very simple proof of the LSI for high temperature spin systems. J. Funct. Anal., 276(8):2582–2588, 2019.
  7. R. Bauerschmidt and T. Bodineau. Log-Sobolev inequality for the continuum sine-Gordon model. Comm. Pure Appl. Math., 74(10):2064–2113, 2021.
  8. Stochastic dynamics and the Polchinski equation: an introduction. 2023. Preprint, arXiv:2307.07619.
  9. R. Bauerschmidt and B. Dagallier. Log-Sobolev inequality for near critical Ising models. Comm. Pure Appl. Math., 77(4):2568–2576, 2024.
  10. J. Beltrán and C. Landim. Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. Ann. Inst. Henri Poincaré, Probab. Stat., 51(1):59–88, 2015.
  11. G. Ben Arous and A. Jagannath. Spectral gap estimates in mean field spin glasses. Commun. Math. Phys., 361(1):1–52, 2018.
  12. Glauber dynamics on trees and hyperbolic graphs. Probab. Theory Related Fields, 131(3):311–340, 2005.
  13. On mixing of Markov chains: coupling, spectral independence, and entropy factorization. Electron. J. Probab., 27:Paper No. 142, 42, 2022.
  14. S.G. Bobkov and P. Tetali. Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab., 19(2):289–336, 2006.
  15. B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2001.
  16. Negative dependence and the geometry of polynomials. J. Amer. Math. Soc., 22(2):521–567, 2009.
  17. P. Brändén and J. Huh. Lorentzian polynomials. Ann. of Math. (2), 192(3):821–891, 2020.
  18. Glauber dynamics for Ising models on random regular graphs: cut-off and metastability. ALEA Lat. Am. J. Probab. Math. Stat., 18(2):1441–1482, 2021.
  19. The spectral gap for the Kawasaki dynamics at low temperature. J. Statist. Phys., 95(1-2):215–271, 1999.
  20. N. Cancrini and F. Martinelli. On the spectral gap of Kawasaki dynamics under a mixing condition revisited. J. Math. Phys., 41(3):1391–1423, 2000.
  21. The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited. Ann. Inst. H. Poincaré Probab. Statist., 38(4):385–436, 2002.
  22. Computational thresholds for the fixed-magnetization ising model. Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, 2021.
  23. A mean field spin glass with short-range interactions. Commun. Math. Phys., 106(1):41–89, 1986.
  24. Y. Chen and R. Eldan. Localization Schemes: A Framework for Proving Mixing Bounds for Markov Chains. 2022. Preprint, arXiv:2203.04163.
  25. Modified log-Sobolev inequalities for strongly log-concave distributions. Ann. Probab., 49(1):506–525, 2021.
  26. A. Dembo and A. Montanari. Ising models on locally tree-like graphs. The Annals of Applied Probability, 20(2):565–592, 2010.
  27. Extremal cuts of sparse random graphs. Ann. Probab., 45(2):1190–1217, 2017.
  28. A new correlation inequality for Ising models with external fields. Probab. Theory Related Fields, 186(1-2):477–492, 2023.
  29. A spectral condition for spectral gap: fast mixing in high-temperature Ising models. Probab. Theory Related Fields, 182(3-4):1035–1051, 2022.
  30. J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc., 195(910):viii+100, 2008.
  31. A. Gerschenfeld and A. Montanari. Reconstruction for models on random graphs. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 194–204, 2007.
  32. A. Guionnet and B. Zegarlinski. Lectures on logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXVI, volume 1801 of Lecture Notes in Math., pages 1–134. Springer, Berlin, 2003.
  33. J. Hermon and J. Salez. Modified log-Sobolev inequalities for strong-Rayleigh measures. Ann. Appl. Probab., 33(2):1301–1314, 2023.
  34. D. Ioffe. On the extremality of the disordered state for the Ising model on the Bethe lattice. Lett. Math. Phys., 37(2):137–143, 1996.
  35. Logarithmic Sobolev inequality for some models of random walks. Ann. Probab., 26(4):1855–1873, 1998.
  36. Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys., 156(2):399–433, 1993.
  37. F. Martinelli. Lectures on Glauber dynamics for discrete spin models. In Lectures on probability theory and statistics (Saint-Flour, 1997), volume 1717 of Lecture Notes in Math., pages 93–191. Springer, Berlin, 1999.
  38. Glauber dynamics on trees: boundary conditions and mixing time. Commun. Math. Phys., 250(2):301–334, 2004.
  39. M. Mézard and A. Montanari. Information, physics, and computation. Oxford Graduate Texts. Oxford University Press, Oxford, 2009.
  40. The weak limit of Ising models on locally tree-like graphs. Probab. Theory Related Fields, 152(1-2):31–51, 2012.
  41. E. Mossel and A. Sly. Exact thresholds for Ising-Gibbs samplers on general graphs. Ann. Probab., 41(1):294–328, 2013.
  42. Ising model on trees and factors of IID. Commun. Math. Phys., 389(2):1009–1046, 2022.
  43. J. Quastel. Bulk diffusion in a system with site disorder. Ann. Probab., 34(5):1990–2036, 2006.
  44. Upgrading MLSI to LSI for reversible Markov chains. J. Funct. Anal., 285(9):Paper No. 110076, 15, 2023.
  45. L. Saloff-Coste. Lectures on finite Markov chains. In Lectures on probability theory and statistics (Saint-Flour, 1996), volume 1665 of Lecture Notes in Math., pages 301–413. Springer, 1997.
  46. Diffusive limit of lattice gas with mixing conditions. Asian J. Math., 1(4):623–678, 1997.
  47. H.-T. Yau. Logarithmic Sobolev inequality for lattice gases with mixing conditions. Commun. Math. Phys., 181(2):367–408, 1996.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com