Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Tightness of exponential metrics for log-correlated Gaussian fields in arbitrary dimension (2310.03996v3)

Published 6 Oct 2023 in math.PR, math-ph, and math.MP

Abstract: We prove the tightness of a natural approximation scheme for an analog of the Liouville quantum gravity metric on $\mathbb Rd$ for arbitrary $d\geq 2$. More precisely, let ${h_n}_{n\geq 1}$ be a suitable sequence of Gaussian random functions which approximates a log-correlated Gaussian field on $\mathbb Rd$. Consider the family of random metrics on $\mathbb Rd$ obtained by weighting the lengths of paths by $e{\xi h_n}$, where $\xi > 0$ is a parameter. We prove that if $\xi$ belongs to the subcritical phase (which is defined by the condition that the distance exponent $Q(\xi)$ is greater than $\sqrt{2d}$), then after appropriate re-scaling, these metrics are tight and that every subsequential limit is a metric on $\mathbb Rd$ which induces the Euclidean topology. We include a substantial list of open problems.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets