Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Domain Walking with Reduced-Order Models of Locomotion (2310.03179v1)

Published 4 Oct 2023 in cs.RO

Abstract: Drawing inspiration from human multi-domain walking, this work presents a novel reduced-order model based framework for realizing multi-domain robotic walking. At the core of our approach is the viewpoint that human walking can be represented by a hybrid dynamical system, with continuous phases that are fully-actuated, under-actuated, and over-actuated and discrete changes in actuation type occurring with changes in contact. Leveraging this perspective, we synthesize a multi-domain linear inverted pendulum (MLIP) model of locomotion. Utilizing the step-to-step dynamics of the MLIP model, we successfully demonstrate multi-domain walking behaviors on the bipedal robot Cassie -- a high degree of freedom 3D bipedal robot. Thus, we show the ability to bridge the gap between multi-domain reduced order models and full-order multi-contact locomotion. Additionally, our results showcase the ability of the proposed method to achieve versatile speed-tracking performance and robust push recovery behaviors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A. D. Ames, R. Vasudevan, and R. Bajcsy, “Human-data based cost of bipedal robotic walking,” in Proceedings of the 14th international conference on Hybrid systems: computation and control, 2011, pp. 153–162.
  2. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation,” in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1.   Maui, HI, USA: IEEE, 2001, pp. 239–246.
  3. Y. Gong and J. W. Grizzle, “Zero Dynamics, Pendulum Models, and Angular Momentum in Feedback Control of Bipedal Locomotion,” Journal of Dynamic Systems, Measurement, and Control, vol. 144, no. 12, p. 121006, Dec. 2022.
  4. X. Xiong and A. Ames, “3-D Underactuated Bipedal Walking via H-LIP Based Gait Synthesis and Stepping Stabilization,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2405–2425, Aug. 2022.
  5. M. Kim and S. H. Collins, “Once-Per-Step Control of Ankle Push-Off Work Improves Balance in a Three-Dimensional Simulation of Bipedal Walking,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 406–418, Apr. 2017.
  6. J. P. Reher, A. Hereid, S. Kolathaya, C. M. Hubicki, and A. D. Ames, “Algorithmic foundations of realizing multi-contact locomotion on the humanoid robot durus,” in Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics.   Springer, 2020, pp. 400–415.
  7. R. Sellaouti, O. Stasse, S. Kajita, K. Yokoi, and A. Kheddar, “Faster and Smoother Walking of Humanoid HRP-2 with Passive Toe Joints,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2006, pp. 4909–4914, iSSN: 2153-0866.
  8. C. Chevallereau, D. Djoudi, and J. W. Grizzle, “Stable Bipedal Walking With Foot Rotation Through Direct Regulation of the Zero Moment Point,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 390–401, Apr. 2008.
  9. H. Zhao, A. Hereid, W.-l. Ma, and A. D. Ames, “Multi-contact bipedal robotic locomotion,” Robotica, vol. 35, no. 5, pp. 1072–1106, May 2017.
  10. K. Chao and P. Hur, “A step towards generating human-like walking gait via trajectory optimization through contact for a bipedal robot with one-sided springs on toes,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sept. 2017, pp. 4848–4853, iSSN: 2153-0866.
  11. J. Reher, “Dynamic Bipedal Locomotion: From Hybrid Zero Dynamics to Control Lyapunov Functions via Experimentally Realizable Methods,” Ph.D. dissertation, California Institute of Technology, Feb. 2021.
  12. F. Sup, A. Bohara, and M. Goldfarb, “Design and Control of a Powered Transfemoral Prosthesis,” The International Journal of Robotics Research, vol. 27, no. 2, pp. 263–273, Feb. 2008, publisher: SAGE Publications Ltd STM.
  13. N. P. Fey, A. M. Simon, A. J. Young, and L. J. Hargrove, “Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds,” IEEE journal of translational engineering in health and medicine, vol. 2, p. 2100412, 2014.
  14. N. Thatte, T. Shah, and H. Geyer, “Robust and Adaptive Lower Limb Prosthesis Stance Control via Extended Kalman Filter-Based Gait Phase Estimation,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3129–3136, Oct. 2019.
  15. M. F. Eilenberg, H. Geyer, and H. Herr, “Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 2, pp. 164–173, Apr. 2010.
  16. R. Gehlhar, M. Tucker, A. J. Young, and A. D. Ames, “A review of current state-of-the-art control methods for lower-limb powered prostheses,” Annual Reviews in Control, vol. 55, pp. 142–164, 2023.
  17. J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models, feedback control, and open problems of 3D bipedal robotic walking,” Automatica, vol. 50, no. 8, pp. 1955–1988, Aug. 2014.
  18. M. Vukobratović and B. Borovac, “Zero-moment point — thirty five years of its life,” International Journal of Humanoid Robotics, vol. 01, no. 01, pp. 157–173, Mar. 2004.
  19. D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176, Oct. 2013.
  20. I. Danilov, B. Gabbasov, I. Afanasyev, and E. Magid, “ZMP Trajectory from Human Body Locomotion Dynamics Evaluated by Kinect-based Motion Capture System:,” in International Conference on Computer Vision Theory and Applications, 2016, pp. 160–166.
  21. Y. Gong and J. Grizzle, “Angular Momentum about the Contact Point for Control of Bipedal Locomotion: Validation in a LIP-based Controller,” Apr. 2021, arXiv:2008.10763 [cs, eess].
  22. K. Kouramas, S. Rakovic, E. Kerrigan, J. Allwright, and D. Mayne, “On the Minimal Robust Positively Invariant Set for Linear Difference Inclusions,” in Proceedings of the 44th IEEE Conference on Decision and Control, Dec. 2005, pp. 2296–2301, iSSN: 0191-2216.
  23. A. Robotics, https://www.agilityrobotics.com/robots#cassie.
  24. K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic Programming for Multirobot and Task-Space Force Control,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 64–77, Feb. 2019.
  25. E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2012, pp. 5026–5033.
  26. I. Birch, W. Vernon, J. Walker, and M. Young, “Terminology and forensic gait analysis,” Science & Justice, vol. 55, no. 4, pp. 279–284, July 2015.
  27. M. Dai, X. Xiong, J. Lee, and A. D. Ames, “Data-driven Adaptation for Robust Bipedal Locomotion with Step-to-Step Dynamics,” Aug. 2023, arXiv:2209.08458 [cs, eess].
Citations (1)

Summary

We haven't generated a summary for this paper yet.