Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small-Disturbance Input-to-State Stability of Perturbed Gradient Flows: Applications to LQR Problem (2310.02930v2)

Published 4 Oct 2023 in math.OC, cs.SY, and eess.SY

Abstract: This paper studies the effect of perturbations on the gradient flow of a general nonlinear programming problem, where the perturbation may arise from inaccurate gradient estimation in the setting of data-driven optimization. Under suitable conditions on the objective function, the perturbed gradient flow is shown to be small-disturbance input-to-state stable (ISS), which implies that, in the presence of a small-enough perturbation, the trajectories of the perturbed gradient flow must eventually enter a small neighborhood of the optimum. This work was motivated by the question of robustness of direct methods for the linear quadratic regulator problem, and specifically the analysis of the effect of perturbations caused by gradient estimation or round-off errors in policy optimization. We show small-disturbance ISS for three of the most common optimization algorithms: standard gradient flow, natural gradient flow, and Newton gradient flow.

Citations (3)

Summary

We haven't generated a summary for this paper yet.