Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Quantification and Representation of Aggregate Flexibility in Electric Vehicles (2310.02729v2)

Published 4 Oct 2023 in eess.SY and cs.SY

Abstract: Aggregation is crucial to the effective use of flexibility, especially in the case of electric vehicles (EVs) because of their limited individual battery sizes and large aggregate impact. This research proposes a novel method to quantify and represent the aggregate charging flexibility of EV fleets within a fixed flexibility request window. These windows can be chosen based on relevant network operator needs, such as evening congestion periods. The proposed representation is independent of the number of assets but scales only with the number of discrete time steps in the chosen window. The representation involves $2T$ parameters, with T being the number of consecutive time steps in the window. The feasibility of aggregate power signals can be checked using $2T$ constraints and optimized using $2(2T-1)$ constraints, both exactly capturing the flexibility region. Using a request window eliminates uncertainty related to EV arrival and departure times outside the window. We present the necessary theoretical framework for our proposed methods and outline steps for transitioning between representations. Additionally, we compare the computational efficiency of the proposed method with the common direct aggregation method, where individual EV constraints are concatenated.

Citations (1)

Summary

We haven't generated a summary for this paper yet.