Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modularity in Deep Learning: A Survey (2310.01154v1)

Published 2 Oct 2023 in cs.LG

Abstract: Modularity is a general principle present in many fields. It offers attractive advantages, including, among others, ease of conceptualization, interpretability, scalability, module combinability, and module reusability. The deep learning community has long sought to take inspiration from the modularity principle, either implicitly or explicitly. This interest has been increasing over recent years. We review the notion of modularity in deep learning around three axes: data, task, and model, which characterize the life cycle of deep learning. Data modularity refers to the observation or creation of data groups for various purposes. Task modularity refers to the decomposition of tasks into sub-tasks. Model modularity means that the architecture of a neural network system can be decomposed into identifiable modules. We describe different instantiations of the modularity principle, and we contextualize their advantages in different deep learning sub-fields. Finally, we conclude the paper with a discussion of the definition of modularity and directions for future research.

Citations (1)

Summary

We haven't generated a summary for this paper yet.