Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dataset Condensation for Recommendation (2310.01038v3)

Published 2 Oct 2023 in cs.IR

Abstract: Training recommendation models on large datasets requires significant time and resources. It is desired to construct concise yet informative datasets for efficient training. Recent advances in dataset condensation show promise in addressing this problem by synthesizing small datasets. However, applying existing methods of dataset condensation to recommendation has limitations: (1) they fail to generate discrete user-item interactions, and (2) they could not preserve users' potential preferences. To address the limitations, we propose a lightweight condensation framework tailored for recommendation (DConRec), focusing on condensing user-item historical interaction sets. Specifically, we model the discrete user-item interactions via a probabilistic approach and design a pre-augmentation module to incorporate the potential preferences of users into the condensed datasets. While the substantial size of datasets leads to costly optimization, we propose a lightweight policy gradient estimation to accelerate the data synthesis. Experimental results on multiple real-world datasets have demonstrated the effectiveness and efficiency of our framework. Besides, we provide a theoretical analysis of the provable convergence of DConRec. Our implementation is available at: https://github.com/JiahaoWuGit/DConRec.

Summary

We haven't generated a summary for this paper yet.