Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conflict-Aware Active Automata Learning (2310.01003v1)

Published 2 Oct 2023 in cs.FL and cs.LG

Abstract: Active automata learning algorithms cannot easily handle conflict in the observation data (different outputs observed for the same inputs). This inherent inability to recover after a conflict impairs their effective applicability in scenarios where noise is present or the system under learning is mutating. We propose the Conflict-Aware Active Automata Learning (C3AL) framework to enable handling conflicting information during the learning process. The core idea is to consider the so-called observation tree as a first-class citizen in the learning process. Though this idea is explored in recent work, we take it to its full effect by enabling its use with any existing learner and minimizing the number of tests performed on the system under learning, specially in the face of conflicts. We evaluate C3AL in a large set of benchmarks, covering over 30 different realistic targets, and over 18,000 different scenarios. The results of the evaluation show that C3AL is a suitable alternative framework for closed-box learning that can better handle noise and mutations.

Summary

We haven't generated a summary for this paper yet.