Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

City Foundation Models for Learning General Purpose Representations from OpenStreetMap (2310.00583v3)

Published 1 Oct 2023 in cs.DB and cs.AI

Abstract: Pre-trained Foundation Models (PFMs) have ushered in a paradigm-shift in Artificial Intelligence, due to their ability to learn general-purpose representations that can be readily employed in a wide range of downstream tasks. While PFMs have been successfully adopted in various fields such as Natural Language Processing and Computer Vision, their capacity in handling geospatial data and answering urban questions remains limited. This can be attributed to the intrinsic heterogeneity of geospatial data, which encompasses different data types, including points, segments and regions, as well as multiple information modalities, such as a spatial position, visual characteristics and textual annotations. The proliferation of Volunteered Geographic Information initiatives, and the ever-increasing availability of open geospatial data sources, like OpenStreetMap, which is freely accessible globally, unveil a promising opportunity to bridge this gap. In this paper, we present CityFM, a self-supervised framework to train a foundation model within a selected geographical area of interest, such as a city. CityFM relies solely on open data from OSM, and produces multimodal representations of entities of different types, incorporating spatial, visual, and textual information. We analyse the entity representations generated using our foundation models from a qualitative perspective, and conduct quantitative experiments on road, building, and region-level downstream tasks. We compare its results to algorithms tailored specifically for the respective applications. In all the experiments, CityFM achieves performance superior to, or on par with, the baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. Jokar Arsanjani Jamal, Zipf Alexander, Mooney Peter, and Helbich Marco, “An Introduction to OpenStreetMap in Geographic Information Science: Experiences, Research, and Applications“, in Geographic Information Science: Experiences, Research, and Applications. 1–15.
  2. Sina Keller, Raoul Gabriel, and Johanna Guth, “Machine Learning Framework for the Estimation of Average Speed in Rural Road Networks with OpenStreetMap Data“, ISPRS Int. J. Geo Inf. 9 (2020), 638.
  3. Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng, “Effective Travel Time Estimation: When Historical Trajectories over Road Networks Matter“, Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA, 2135–2149.
  4. Noah Johnson, Wayne Treible, and Daniel Crispell, “OpenSentinelMap: A Large-Scale Land Use Dataset using OpenStreetMap and Sentinel-2 Imagery“, In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1332–1340.
  5. Yanjun Qin, Yuchen Fang, Haiyong Luo, Fang Zhao, and Chenxing Wang, “Next Point-of-Interest Recommendation with Auto-Correlation Enhanced Multi-Modal Transformer Network“, In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (Madrid, Spain) (SIGIR ’22). Association for Computing Machinery, New York, NY, USA, 2612–2616.
  6. Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He, “A Comprehensive Survey on Transfer Learning“, A Comprehensive Survey on Transfer Learning. CoRR abs/1911.02685 (2019).
  7. Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu, and Lichao Sun, “A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT“, arXiv:2302.09419 [cs.AI].
  8. Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao Liu, Song Gao, Tianming Liu, Gao Cong, Yingjie Hu, Chris Cundy, Ziyuan Li, Rui Zhu, and Ni Lao, “On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence“.
  9. Tobias Skovgaard Jepsen, Christian S. Jensen, and Thomas Dyhre Nielsen, “Relational Fusion Networks: Graph Convolutional Networks for Road Networks“, IEEE Transactions on Intelligent Transportation Systems 23, 1 (2022), 418–429.
  10. Meng-xiang Wang, Wang-Chien Lee, Tao-yang Fu, and Ge Yu, “Learning Embeddings of Intersections on Road Networks“, (SIGSPATIAL ’19). Association for Computing Machinery, New York, NY, USA, 309–318.
  11. Ali Ahmed Loai, Schmid Falko, Al-Salman Rami, and Kauppinen Tomi, “Ambiguity and Plausibility: Managing Classification Quality in Volunteered Geographic Information“, (SIGSPATIAL ’14). Association for Computing Machinery, New York, NY, USA, 143–152.
  12. Szymon Woźniak and Piotr Szymański, “Hex2vec: Context-Aware Embedding H3 Hexagons with OpenStreetMap Tags“, (SIGSPATIAL ’19). In Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery (Beijing, China) (GEOAI ’21). Association for Computing Machinery, New York, NY, USA, 61–71.
  13. Liming Zhang and Dieter Pfoser, “Using OpenStreetMap point-of-interest data to model urban change—A feasibility study“, (SIGSPATIAL ’19). PLOS ONE 14, 2 (02 2019), 1–34.
  14. Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, Cheng Long, Yiding Liu, Arun Kumar Chandran, and Richard Ellison, “Robust Road Network Representation Learning: When Traffic Patterns Meet Traveling Semantics“, In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (Virtual Event, Queensland, Australia) (CIKM ’21). Association for Computing Machinery, New York, NY, USA, 211–220.
  15. Zhecheng Wang, Haoyuan Li, and Ram Rajagopal, “ Urban2Vec: Incorpo- rating Street View Imagery and POIs for Multi-Modal Urban Neighborhood Embedding“, Proceedings of the AAAI Conference on Artificial Intelligence 34 (04 2020), 1013–1020.
  16. Nicolas Tempelmeier, Simon Gottschalk, and Elena Demidova, “GeoVectors: A Linked Open Corpus of OpenStreetMap Embeddings on World Scale“, In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (Virtual Event, Queensland, Australia) (CIKM ’21). Association for Computing Machinery, New York, NY, USA, 4604–4612.
  17. Alarabi Louai, Eldawy Ahmed, Alghamdi Rami, and Mokbel Mohamed F., “TAREEG: A MapReduce-Based Web Service for Extracting Spatial Data from OpenStreetMap“, In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA, 897–900.
  18. Yao-Yi Chiang Zekun Li, Jina Kim and Muhao Chen, “SpaBERT: A Pretrained Language Model from Geographic Data for Geo-Entity Representation“, EMNLP (2022).
  19. Pasquale Balsebre, Dezhong Yao, Gao Cong, Weiming Huang, and Zhen Hain, “Mining Geospatial Relationships from Text“, Proc. ACM Manag. Data 1, 1, Article 93 (may 2023), 26 pages.
  20. Yile Chen, Cheng Long, Gao Cong, and Chenliang Li., “Context-Aware Deep Model for Joint Mobility and Time Prediction“, In Proceedings of the 13th International Conference on Web Search and Data Mining (Houston, TX, USA) (WSDM ’20). Association for Computing Machinery, New York, NY, USA, 106–114.
  21. Shang Liu, Gao Cong, Kaiyu Feng, Wanli Gu, and Fuzheng Zhang, “Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword Queries.“, Proc. ACM Manag. Data 1, 1, Article 11 (may 2023), 25 pages.
  22. Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann, “Time-Aware Point-of-Interest Recommendation“, In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (Dublin, Ireland) (SIGIR ’13). Association for Computing Machinery, New York, NY, USA, 363–372.
  23. Liang Zhang, Cheng Long, and Gao Cong, “Region Embedding With Intra and Inter-View Contrastive Learning“, EEE Transactions on Knowledge and Data Engineering 35, 9 (2023), 9031–9036.
  24. Zhida Chen, Lisi Chen, Gao Cong, and Christian S. Jensen, “Location- and Keyword-Based Querying of Geo-Textual Data: A Survey“, The VLDB Journal 30, 4 (mar 2021), 603–640.
  25. Gao Cong, Christian S. Jensen, and Dingming Wu, “Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects“, roc. VLDB Endow. 2, 1 (aug 2009), 337–348.
  26. Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe., “Keyword Search on Spatial Databases“, In 2008 IEEE 24th International Conference on Data Engineering. 656–665.
  27. Balsebre Pasquale, Yao Dezhong, Cong Gao and Hai Zhen, “AGeospatial Entity Resolution“, In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for Computing Machinery, New York, NY, USA, 3061–3070.
  28. Ville V. Lehtola, Mila Koeva, Sander Oude Elberink, Paulo Raposo, Juho-Pekka Virtanen, Faridaddin Vahdatikhaki, and Simone Borsci, “Digital twin of a city: Review of technology serving city needs“, International Journal of Applied Earth Observation and Geoinformation 114 (2022), 102915.
  29. Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever, “Learning Transferable Visual Models From Natural Language Supervision“, arXiv:2103.0002.
  30. azak Olu-Ajayi, Hafiz Alaka, Ismail Sulaimon, Habeeb Balogun, Godoyon Wusu, Wasiu Yusuf, and Muideen Adegoke, “ Building energy performance prediction: A reliability analysis and evaluation of feature selection methods“, Expert Systems with Applications 225 (2023), 120109.
  31. Danish Contractor, Shashank Goel, Mausam, and Parag Singla, “Joint Spatio-Textual Reasoning for Answering Tourism Questions“, Proceedings of the Web Conference 2021 (2020).
  32. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding“, CoRR abs/1810.04805 (2018). arXiv:1810.0480.
  33. Giorgos Giannopoulos, Konstantinos Alexis, Nikos Kostagiolas, and Dimitrios Skoutas, “Classifying Points of Interest with Minimum Metadata“, In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial Networks and Geoadvertising (Chicago, Illinois) (LocalRec ’19). Association for Computing Machinery, New York, NY, USA, Article 1, 4 pages.
  34. Michael Gutmann and Aapo Hyvärinen, “Noise-contrastive estimation: A new estimation principle for unnormalized statistical models“, In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research), Yee Whye Teh and Mike Titterington (Eds.), Vol. 9. PMLR, Chia Laguna Resort, Sardinia, Italy, 297–304.
  35. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition“, CoRR abs/1512.03385 (2015). arXiv:1512.03385.
  36. i Zhao, Dan Peng, Chuhan Wu, Huan Chen, Meiyu Yu, Wanji Zheng, Li Ma, Hua Chai, Jieping Ye, and Xiaohu Qie, “Incorporating Semantic Similarity with Geographic Correlation for Query-POI Relevance Learning“, Thirty-Third AAAI Conference on Artificial Intelligence (Honolulu, Hawaii, USA). AAAI Press, Article 157, 8 pages.
  37. Qiang Cui, Chenrui Zhang, Yafeng Zhang, Jinpeng Wang, and Mingchen Cai, “ST-PIL: Spatial-Temporal Periodic Interest Learning for Next Point-of-Interest Recommendation“, Proceedings of the 30th ACM International Conference on Information & Knowledge Management (2021).
  38. Jiaqi Jin, Zhuojian Xiao, Qiang Qiu, and Jinyun Fang., “A Geohash Based Place2vec Model“, In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. 3344–3347.
  39. Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao, “Multi-Scale Representation Learning for Spatial Feature Distributions using Grid Cells“, CoRR abs/2003.00824 (2020). arXiv:2003.0082.
  40. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhi, “Attention Is All You Need“, CoRR abs/1706.03762 (2017). arXiv:1706.0376.
  41. Aditya Grover and Jure Leskovec, “node2vec: Scalable Feature Learning for Networks“, CoRR abs/1607.00653 (2016). arXiv:1607.00653.
  42. Jilin Hu, Chenjuan Guo, Bin Yang, and Christian S. Jensen, “Stochastic Weight Completion for Road Networks Using Graph Convolutional Networks“, In 2019 IEEE 35th International Conference on Data Engineering (ICDE). 1274–1285.
  43. Bo Yan, Krzysztof Janowicz, Gengchen Mai, and Song Gao, “From ITDL to Place2Vec: Reasoning About Place Type Similarity and Relatedness by Learning Embeddings From Augmented Spatial Contexts“, In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (Redondo Beach, CA, USA) (SIGSPATIAL ’17). Association for Computing Machinery, New York, NY, USA, Article 35, 10 pages.
  44. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient estimation of word representations in vector space“, arXiv preprint arXiv:1301.3781 (2013).
  45. Weiming Huang, Daokun Zhang, Gengchen Mai, Xu Guo, and Lizhen Cui, “Next Point-of-Interest Recommendation with Auto-Correlation Enhanced Multi-Modal Transformer Network“, SPRS Journal of Photogrammetry and Remote Sensing 196 (02 2023), 134–145.
  46. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov, “RoBERTa: A Robustly Optimized BERT Pretraining Approach“, CoRR abs/1907.11692 (2019). arXiv:1907.11692.
  47. Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample., “LLaMA: Open and Efficient Foundation Language Models“, arXiv:2302.13971 [cs.CL].
  48. Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, Seyedeh Sara Mahdavi, Raphael Gontijo Lopes, Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi, “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding“, ArXiv abs/2205.11487 (2022).
  49. Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick, “High-Resolution Image Synthesis with Latent Diffusion Models“, arXiv:2112.10752 [cs.CV].
  50. Yao-Yi Chiang Zekun Li, Jina Kim and Muhao Chen, “Segment Anything“, arXiv:2304.02643 (2023).
  51. Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi, “BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation“, In ICML.
  52. OpenAI. 2023, “GPT-4 Technical Report“, ArXiv:2303.08774 [cs.CL].
  53. Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov, “Enriching Word Vectors with Subword Information“, CoRR abs/1607.04606 (2016). arXiv:1607.04606.
  54. Abhilash Bandam, Busari Eedris, Syranidou Chloi, Linssen Jochen, and Stolten Detlef, “Classification of Building Types in Germany: A Data-Driven Modeling Approach“, Data 7 (04 2022), 45.
  55. Zhenyu Lu, Jungho Im, Jinyoung Rhee, and Michael Hodgson, “Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data“, Landscape and Urban Planning 130 (2014), 134–148.
  56. Mariana Belgiu, Ivan Tomljenovic, Thomas J. Lampoltshammer, Thomas Blaschke, and Bernhard Höfle, “Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data“, Remote. Sens. 6 (2014), 1347–1366.
  57. Michael Wurm, Ariane Droin, Thomas Stark, Christian Geiß, Wolfgang Sulzer, and Hannes Taubenböck, “Deep Learning-Based Generation of Building Stock Data from Remote Sensing for Urban Heat Demand Modeling“, International Journal of Geo-Information 10 (01 2021).
Citations (5)

Summary

We haven't generated a summary for this paper yet.