Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Powered Descent Guidance via First-Order Optimization with Expansive Projection (2310.00397v2)

Published 30 Sep 2023 in math.OC, cs.RO, cs.SY, and eess.SY

Abstract: This paper introduces a first-order method for solving optimal powered descent guidance (PDG) problems, that directly handles the nonconvex constraints associated with the maximum and minimum thrust bounds with varying mass and the pointing angle constraints on thrust vectors. This issue has been conventionally circumvented via lossless convexification (LCvx), which lifts a nonconvex feasible set to a higher-dimensional convex set, and via linear approximation of another nonconvex feasible set defined by exponential functions. However, this approach sometimes results in an infeasible solution when the solution obtained from the higher-dimensional space is projected back to the original space, especially when the problem involves a nonoptimal time of flight. Additionally, the Taylor series approximation introduces an approximation error that grows with both flight time and deviation from the reference trajectory. In this paper, we introduce a first-order approach that makes use of orthogonal projections onto nonconvex sets, allowing expansive projection (ExProj). We show that 1) this approach produces a feasible solution with better performance even for the nonoptimal time of flight cases for which conventional techniques fail to generate achievable trajectories and 2) the proposed method compensates for the linearization error that arises from Taylor series approximation, thus generating a superior guidance solution with less fuel consumption. We provide numerical examples featuring quantitative assessments to elucidate the effectiveness of the proposed methodology, particularly in terms of fuel consumption and flight time. Our analysis substantiates the assertion that the proposed approach affords enhanced flexibility in devising viable trajectories for a diverse array of planetary soft landing scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. L. Blackmore, “Autonomous precision landing of space rockets,” in Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium, vol. 46.   The Bridge Washington, DC, 2016, pp. 15–20.
  2. J. Vila and J. Hassin, “Technology acceleration process for the Themis low cost and reusable prototype,” in 8th European conference for aeronautics and space sciences, 2019, pp. 1–4.
  3. X. Liu, P. Lu, and B. Pan, “Survey of convex optimization for aerospace applications,” Astrodynamics, vol. 1, pp. 23–40, 2017.
  4. Y. Mao, M. Szmuk, and B. Açıkmeşe, “A tutorial on real-time convex optimization based guidance and control for aerospace applications,” in 2018 Annual American Control Conference (ACC).   IEEE, 2018, pp. 2410–2416.
  5. L. Xie, H. Zhang, X. Zhou, and G. Tang, “A convex programming method for rocket powered landing with angle of attack constraint,” IEEE Access, vol. 8, pp. 100 485–100 496, 2020.
  6. M. Sagliano, A. Heidecker, J. Macés Hernández, S. Farì, M. Schlotterer, S. Woicke, D. Seelbinder, and E. Dumont, “Onboard guidance for reusable rockets: aerodynamic descent and powered landing,” in AIAA Scitech 2021 Forum, 2021, p. 0862.
  7. D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone, and B. Açıkmeşe, “Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently,” IEEE Control Systems Magazine, vol. 42, no. 5, pp. 40–113, 2022.
  8. J. Guadagnini, M. Lavagna, and P. Rosa, “Model predictive control for reusable space launcher guidance improvement,” Acta Astronautica, vol. 193, pp. 767–778, 2022.
  9. A. G. Kamath, P. Elango, T. Kim, S. Mceowen, Y. Yu, J. M. Carson, M. Mesbahi, and B. Açıkmeşe, “Customized real-time first-order methods for onboard dual quaternion-based 6-dof powered-descent guidance,” in AIAA SciTech 2023 Forum, 2023, p. 2003.
  10. M. Sagliano, D. Seelbinder, S. Theil, and P. Lu, “Six-degree-of-freedom rocket landing optimization via augmented convex–concave decomposition,” Journal of Guidance, Control, and Dynamics, vol. 47, no. 1, pp. 20–35, 2024.
  11. R. Yang, X. Liu, and Z. Song, “Rocket landing guidance based on linearization-free convexification,” Journal of Guidance, Control, and Dynamics, vol. 47, no. 2, pp. 217–232, 2024.
  12. J. Shaffer, C. Owens, T. Klein, A. D. Horchler, S. C. Buckner, B. J. Johnson, J. M. Carson, and B. Açıkmeşe, “Implementation and testing of convex optimization-based guidance for hazard detection and avoidance on a lunar lander,” in AIAA SciTech 2024 forum, 2024, p. 1584.
  13. Y. Song, X. Miao, L. Cheng, and S. Gong, “The feasibility criterion of fuel-optimal planetary landing using neural networks,” Aerospace Science and Technology, vol. 116, p. 106860, 2021.
  14. J. Wang, H. Ma, H. Li, and H. Chen, “Real-time guidance for powered landing of reusable rockets via deep learning,” Neural Computing and Applications, vol. 35, no. 9, pp. 6383–6404, 2023.
  15. W. Li, Y. Song, L. Cheng, and S. Gong, “Closed-loop deep neural network optimal control algorithm and error analysis for powered landing under uncertainties,” Astrodynamics, vol. 7, no. 2, pp. 211–228, 2023.
  16. U. Çelik and M. U. Demirezen, “Optimal reusable rocket landing guidance: A cutting-edge approach integrating scientific machine learning and enhanced neural networks,” IEEE Access, 2024.
  17. B. Açıkmeşe, J. M. Carson, and L. Blackmore, “Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem,” IEEE Transactions on Control Systems Technology, vol. 21, no. 6, pp. 2104–2113, 2013.
  18. B. Açıkmeşe and S. R. Ploen, “Convex programming approach to powered descent guidance for mars landing,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 5, pp. 1353–1366, 2007.
  19. B. Açıkmeşe, D. Scharf, L. Blackmore, and A. Wolf, “Enhancements on the convex programming based powered descent guidance algorithm for mars landing,” in AIAA/AAS astrodynamics specialist conference and exhibit, 2008, p. 6426.
  20. A. S. Nemirovski and M. J. Todd, “Interior-point methods for optimization,” Acta Numerica, vol. 17, pp. 191–234, 2008.
  21. J. Gondzio, “Interior point methods 25 years later,” European Journal of Operational Research, vol. 218, no. 3, pp. 587–601, 2012.
  22. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
  23. P. Elango, A. G. Kamath, Y. Yu, B. Açıkmeşe, M. Mesbahi, and J. M. Carson, “A customized first-order solver for real-time powered-descent guidance,” in AIAA SciTech 2022 Forum, 2022, p. 0951.
  24. Y. Yu, P. Elango, and B. Açıkmeşe, “Proportional-integral projected gradient method for model predictive control,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2174–2179, 2020.
  25. N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and trends® in Optimization, vol. 1, no. 3, pp. 127–239, 2014.
  26. Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex nonsmooth optimization,” Journal of Scientific Computing, vol. 78, pp. 29–63, 2019.
  27. R. I. Boţ and D.-K. Nguyen, “The proximal alternating direction method of multipliers in the nonconvex setting: convergence analysis and rates,” Mathematics of Operations Research, vol. 45, no. 2, pp. 682–712, 2020.
  28. J. Zhang and Z.-Q. Luo, “A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization,” SIAM Journal on Optimization, vol. 30, no. 3, pp. 2272–2302, 2020.
  29. H. Le, N. Gillis, and P. Patrinos, “Inertial block proximal methods for non-convex non-smooth optimization,” in International Conference on Machine Learning.   PMLR, 2020, pp. 5671–5681.
  30. A. Themelis and P. Patrinos, “Douglas–Rachford splitting and ADMM for nonconvex optimization: Tight convergence results,” SIAM Journal on Optimization, vol. 30, no. 1, pp. 149–181, 2020.
  31. X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence of first-and zeroth-order primal–dual algorithms for distributed nonconvex optimization,” IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 4194–4201, 2021.
  32. M. Danilova, P. Dvurechensky, A. Gasnikov, E. Gorbunov, S. Guminov, D. Kamzolov, and I. Shibaev, “Recent theoretical advances in non-convex optimization,” in High-Dimensional Optimization and Probability: With a View Towards Data Science.   Springer, 2022, pp. 79–163.
  33. S. Hurault, A. Leclaire, and N. Papadakis, “Proximal denoiser for convergent plug-and-play optimization with nonconvex regularization,” in International Conference on Machine Learning.   PMLR, 2022, pp. 9483–9505.
  34. L. Yang, “Proximal gradient method with extrapolation and line search for a class of non-convex and non-smooth problems,” Journal of Optimization Theory and Applications, pp. 1–36, 2023.
  35. R. I. Boţ and A. Böhm, “Alternating proximal-gradient steps for (stochastic) nonconvex-concave minimax problems,” SIAM Journal on Optimization, vol. 33, no. 3, pp. 1884–1913, 2023.
  36. M. S. Darup, “Encrypted MPC based on ADMM real-time iterations,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 3508–3514, 2020.
  37. A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded systems,” in European Control Conference (ECC), 2013, pp. 3071–3076.
  38. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  39. D. P. Scharf, M. W. Regehr, G. M. Vaughan, J. Benito, H. Ansari, M. Aung, A. Johnson, J. Casoliva, S. Mohan, D. Dueri et al., “ADAPT demonstrations of onboard large-divert guidance with a VTVL rocket,” in 2014 IEEE aerospace conference.   IEEE, 2014, pp. 1–18.
Citations (1)

Summary

We haven't generated a summary for this paper yet.