Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information (2309.17366v3)

Published 28 Sep 2023 in q-bio.BM and cs.LG

Abstract: Molecular property prediction, crucial for early drug candidate screening and optimization, has seen advancements with deep learning-based methods. While deep learning-based methods have advanced considerably, they often fall short in fully leveraging 3D spatial information. Specifically, current molecular encoding techniques tend to inadequately extract spatial information, leading to ambiguous representations where a single one might represent multiple distinct molecules. Moreover, existing molecular modeling methods focus predominantly on the most stable 3D conformations, neglecting other viable conformations present in reality. To address these issues, we propose 3D-Mol, a novel approach designed for more accurate spatial structure representation. It deconstructs molecules into three hierarchical graphs to better extract geometric information. Additionally, 3D-Mol leverages contrastive learning for pretraining on 20 million unlabeled data, treating their conformations with identical topological structures as weighted positive pairs and contrasting ones as negatives, based on the similarity of their 3D conformation descriptors and fingerprints. We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Taojie Kuang (3 papers)
  2. Yiming Ren (22 papers)
  3. Zhixiang Ren (23 papers)
Citations (5)