Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TBD Pedestrian Data Collection: Towards Rich, Portable, and Large-Scale Natural Pedestrian Data (2309.17187v2)

Published 29 Sep 2023 in cs.CV, cs.HC, and cs.RO

Abstract: Social navigation and pedestrian behavior research has shifted towards machine learning-based methods and converged on the topic of modeling inter-pedestrian interactions and pedestrian-robot interactions. For this, large-scale datasets that contain rich information are needed. We describe a portable data collection system, coupled with a semi-autonomous labeling pipeline. As part of the pipeline, we designed a label correction web app that facilitates human verification of automated pedestrian tracking outcomes. Our system enables large-scale data collection in diverse environments and fast trajectory label production. Compared with existing pedestrian data collection methods, our system contains three components: a combination of top-down and ego-centric views, natural human behavior in the presence of a socially appropriate "robot", and human-verified labels grounded in the metric space. To the best of our knowledge, no prior data collection system has a combination of all three components. We further introduce our ever-expanding dataset from the ongoing data collection effort -- the TBD Pedestrian Dataset and show that our collected data is larger in scale, contains richer information when compared to prior datasets with human-verified labels, and supports new research opportunities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., June 2016, pp. 961–971.
  2. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., June 2018, pp. 2255–2264.
  3. B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs,” in Proc. IEEE/CVF International Conf. on Comput. Vis., 2019, pp. 2375–2384.
  4. K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity forecasting,” in Comput. Vis. – ECCV 2012, 2012, pp. 201–214.
  5. J. Liang, L. Jiang, K. Murphy, T. Yu, and A. Hauptmann, “The garden of forking paths: Towards multi-future trajectory prediction,” in Proc. IEEE Conf. on Comput. Vis. and Pattern Recognit., 2020.
  6. B. Okal and K. O. Arras, “Learning socially normative robot navigation behaviors with bayesian inverse reinforcement learning,” in 2016 IEEE International Conf. on Robotics and Automation (ICRA).   IEEE, 2016, pp. 2889–2895.
  7. H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile robot navigation via inverse reinforcement learning,” The International Journal of Robotics Research, vol. 35, no. 11, pp. 1289–1307, 2016.
  8. A. Biswas, A. Wang, G. Silvera, A. Steinfeld, and H. Admoni, “Socnavbench: A grounded simulation testing framework for evaluating social navigation,” arXiv preprint arXiv:2103.00047, 2021.
  9. H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart, J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand): A large-scale dataset of demonstrations for social navigation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 807–11 814, 2022.
  10. D. Paez-Granados, Y. He, D. Gonon, D. Jia, B. Leibe, K. Suzuki, and A. Billard, “Pedestrian-robot interactions on autonomous crowd navigation: Reactive control methods and evaluation metrics,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 149–156.
  11. D. Brščić, T. Kanda, T. Ikeda, and T. Miyashita, “Person tracking in large public spaces using 3-d range sensors,” IEEE Trans. on Human-Machine Syst., vol. 43, no. 6, pp. 522–534, 2013.
  12. B. Majecka, “Statistical models of pedestrian behaviour in the forum,” Master’s thesis, School of Informatics, University of Edinburgh, 2009.
  13. A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social etiquette: Human trajectory understanding in crowded scenes,” in Comput. Vis. – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., 2016, pp. 549–565.
  14. S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee, J. Aggarwal, H. Lee, L. Davis, et al., “A large-scale benchmark dataset for event recognit. in surveillance video,” in CVPR 2011.   IEEE, 2011, pp. 3153–3160.
  15. S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never walk alone: Modeling social behavior for multi-target tracking,” in Proc. IEEE Int. Conf. Comput. Vis., Sept 2009, pp. 261–268.
  16. A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” Comput. Graph. Forum, vol. 26, no. 3, pp. 655–664, 2007.
  17. R. Martin-Martin, M. Patel, H. Rezatofighi, A. Shenoi, J. Gwak, E. Frankel, A. Sadeghian, and S. Savarese, “Jrdb: A dataset and benchmark of egocentric robot visual perception of humans in built environments,” IEEE Trans. Pattern Anal. Mach. Intell., 2021.
  18. P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting crowds,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Oct 2010, pp. 797–803.
  19. M. Sun, F. Baldini, P. Trautman, and T. Murphey, “Move beyond trajectories: Distribution space coupling for crowd navigation,” arXiv preprint arXiv:2106.13667, 2021.
  20. H. Nishimura, B. Ivanovic, A. Gaidon, M. Pavone, and M. Schwager, “Risk-sensitive sequential action control with multi-modal human trajectory forecasting for safe crowd-robot interaction,” in 2020 IEEE/RSJ International Conf. on Intell. Robots and Syst. (IROS).   IEEE, 2020, pp. 11 205–11 212.
  21. C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Steinfeld, and J. Oh, “Core Challenges of Social Robot Navigation: A Survey,” arXiv e-prints, p. arXiv:2103.05668, Mar. 2021.
  22. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” in CVPR, 2020.
  23. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  24. Y. Zhang, P. Sun, Y. Jiang, D. Yu, Z. Yuan, P. Luo, W. Liu, and X. Wang, “Bytetrack: Multi-object tracking by associating every detection box,” arXiv preprint arXiv:2110.06864, 2021.
  25. A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and S. Savarese, “Sophie: An attentive gan for predicting paths compliant to social and physical constraints,” in Proc. IEEE/CVF Conf. on Comput. Vis. and Pattern Recognit. (CVPR), June 2019.
  26. A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction,” in Proc. IEEE/CVF Conf. on Comput. Vis. and Pattern Recognit. (CVPR), June 2020.
  27. A. Wang and A. Steinfeld, “Group split and merge prediction with 3D convolutional networks,” IEEE Trans. Robot. Autom., vol. 5, no. 2, pp. 1923–1930, 2020.
  28. A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human motion trajectory prediction: A survey,” arXiv preprint arXiv:1905.06113, 2019.
  29. M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic, decision-making agents with deep reinforcement learning,” in IEEE/RSJ International Conf. on Intell. Robots and Syst. (IROS), Madrid, Spain, Sept. 2018.
  30. C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning,” in Proc. IEEE International Conf. on Robotics and Automation (ICRA), 2019, pp. 6015–6022.
  31. Y. Chen, C. Liu, B. E. Shi, and M. Liu, “Robot navigation in crowds by graph convolutional networks with attention learned from human gaze,” IEEE Trans. Robot. Autom., vol. 5, no. 2, pp. 2754–2761, 2020.
  32. L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation through raw depth inputs with generative adversarial imitation learning,” in 2018 IEEE International Conf. on Robotics and Automation (ICRA), 2018, pp. 1111–1117.
  33. Y. Gao and C.-M. Huang, “Evaluation of socially-aware robot navigation,” Frontiers in Robotics and AI, p. 420, 2021.
  34. P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation,” International Journal of Robotics Research, vol. 34, no. 3, pp. 335–356, 2015.
  35. C. Cao, P. Trautman, and S. Iba, “Dynamic channel: A planning framework for crowd navigation,” in 2019 International Conf. on Robotics and Automation (ICRA).   IEEE, 2019, pp. 5551–5557.
  36. A. Wang, C. Mavrogiannis, and A. Steinfeld, “Group-based motion prediction for navigation in crowded environments,” in Conf. on Robot Learning.   PMLR, 2022, pp. 871–882.
  37. B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. Kaesemodel Pontes, D. Ramanan, P. Carr, and J. Hays, “Argoverse 2: Next generation datasets for self-driving perception and forecasting,” in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, J. Vanschoren and S. Yeung, Eds., vol. 1.   Curran, 2021.
  38. P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler, and L. Leal-Taixé, “Mot20: A benchmark for multi object tracking in crowded scenes,” arXiv:2003.09003[cs], Mar. 2020, arXiv: 2003.09003.
  39. C. Gloor, “Pedsim: Pedestrian crowd simulation,” URL http://pedsim. silmaril. org, vol. 5, no. 1, 2016.
  40. N. Tsoi, M. Hussein, J. Espinoza, X. Ruiz, and M. Vázquez, “Sean: Social environment for autonomous navigation,” in Proc. 8th International Conf. on Human-Agent Interaction, 2020, pp. 281–283.
  41. C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Steinfeld, and J. Oh, “Core challenges of social robot navigation: A survey,” arXiv preprint arXiv:2103.05668, 2021.
  42. M. Kuribayashi, T. Ishihara, D. Sato, J. Vongkulbhisal, K. Ram, S. Kayukawa, H. Takagi, S. Morishima, and C. Asakawa, “Pathfinder: Designing a map-less navigation system for blind people in unfamiliar buildings,” in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, ser. CHI ’23.   New York, NY, USA: Association for Computing Machinery, 2023.
  43. D. Brščić, H. Kidokoro, Y. Suehiro, and T. Kanda, “Escaping from children’s abuse of social robots,” in Proc. of the tenth annual acm/ieee international Conf. on human-robot interaction, 2015, pp. 59–66.
  44. Z. Yan, T. Duckett, and N. Bellotto, “Online learning for human classification in 3d lidar-based tracking,” in 2017 IEEE/RSJ International Conf. on Intell. Robots and Syst. (IROS).   IEEE, 2017, pp. 864–871.
  45. A. Rudenko, T. P. Kucner, C. S. Swaminathan, R. T. Chadalavada, K. O. Arras, and A. J. Lilienthal, “Thör: Human-robot navigation data collection and accurate motion trajectories dataset,” IEEE Trans. Robot. Autom., vol. 5, no. 2, pp. 676–682, 2020.
  46. T. Chavdarova, P. Baqué, S. Bouquet, A. Maksai, C. Jose, T. Bagautdinov, L. Lettry, P. Fua, L. Van Gool, and F. Fleuret, “Wildtrack: A multi-camera hd dataset for dense unscripted pedestrian detection,” in Proc. IEEE Conf. on Comput. Vis. and Pattern Recognit., 2018, pp. 5030–5039.
  47. B. Benfold and I. Reid, “Stable multi-target tracking in real-time surveillance video,” in CVPR 2011.   IEEE, 2011, pp. 3457–3464.
  48. B. Zhou, X. Wang, and X. Tang, “Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents,” in 2012 IEEE Conf. on Comput. Vis. and Pattern Recognit.   IEEE, 2012, pp. 2871–2878.
  49. A. Alahi, V. Ramanathan, and L. Fei-Fei, “Socially-aware large-scale crowd forecasting,” in Proc. IEEE Conf. on Comput. Vis. and Pattern Recognit., 2014, pp. 2203–2210.
  50. T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16.   Springer, 2020, pp. 683–700.
  51. Y. Yuan, X. Weng, Y. Ou, and K. M. Kitani, “Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9813–9823.
  52. K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals, waypoints & paths to long term human trajectory forecasting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15 233–15 242.

Summary

We haven't generated a summary for this paper yet.