Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Tides and Time: Machine Learning Triumph in Water Quality (2309.16951v2)

Published 29 Sep 2023 in stat.ML and cs.LG

Abstract: Water resources are essential for sustaining human livelihoods and environmental well being. Accurate water quality prediction plays a pivotal role in effective resource management and pollution mitigation. In this study, we assess the effectiveness of five distinct predictive models linear regression, Random Forest, XGBoost, LightGBM, and MLP neural network, in forecasting pH values within the geographical context of Georgia, USA. Notably, LightGBM emerges as the top performing model, achieving the highest average precision. Our analysis underscores the supremacy of tree-based models in addressing regression challenges, while revealing the sensitivity of MLP neural networks to feature scaling. Intriguingly, our findings shed light on a counterintuitive discovery: machine learning models, which do not explicitly account for time dependencies and spatial considerations, outperform spatial temporal models. This unexpected superiority of machine learning models challenges conventional assumptions and highlights their potential for practical applications in water quality prediction. Our research aims to establish a robust predictive pipeline accessible to both data science experts and those without domain specific knowledge. In essence, we present a novel perspective on achieving high prediction accuracy and interpretability in data science methodologies. Through this study, we redefine the boundaries of water quality forecasting, emphasizing the significance of data driven approaches over traditional spatial temporal models. Our findings offer valuable insights into the evolving landscape of water resource management and environmental protection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Rajaee, T., Boroumand, A.: Forecasting of chlorophyll-a concentrations in south san francisco bay using five different models. Applied Ocean Research 53, 208–217 (2015) Araghinejad [2013] Araghinejad, S.: Data-driven Modeling: Using MATLAB® in Water Resources and Environmental engineering. Springer, ??? (2013) Nourani et al. [2016] Nourani, V., Alami, M.T., Vousoughi, F.D.: Self-organizing map clustering technique for ann-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics 18(2), 288–309 (2016) Zare et al. [2011] Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Araghinejad, S.: Data-driven Modeling: Using MATLAB® in Water Resources and Environmental engineering. Springer, ??? (2013) Nourani et al. [2016] Nourani, V., Alami, M.T., Vousoughi, F.D.: Self-organizing map clustering technique for ann-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics 18(2), 288–309 (2016) Zare et al. [2011] Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Nourani, V., Alami, M.T., Vousoughi, F.D.: Self-organizing map clustering technique for ann-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics 18(2), 288–309 (2016) Zare et al. [2011] Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  2. Araghinejad, S.: Data-driven Modeling: Using MATLAB® in Water Resources and Environmental engineering. Springer, ??? (2013) Nourani et al. [2016] Nourani, V., Alami, M.T., Vousoughi, F.D.: Self-organizing map clustering technique for ann-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics 18(2), 288–309 (2016) Zare et al. [2011] Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Nourani, V., Alami, M.T., Vousoughi, F.D.: Self-organizing map clustering technique for ann-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics 18(2), 288–309 (2016) Zare et al. [2011] Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  3. Nourani, V., Alami, M.T., Vousoughi, F.D.: Self-organizing map clustering technique for ann-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics 18(2), 288–309 (2016) Zare et al. [2011] Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  4. Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models. International agrophysics 25(2) (2011) Huo et al. [2013] Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  5. Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316 (2013) Chang et al. [2016] Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  6. Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236 (2016) Chen et al. [2023] Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  7. Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357 (2023) Li et al. [2022] Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  8. Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14 (2022) Henrique et al. [2019] Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  9. Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251 (2019) Lu and Ma [2020] Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  10. Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169 (2020) Huang et al. [1995] Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  11. Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218 (1995) Wang et al. [2022] Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  12. Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320 (2022) Lundberg and Lee [2017] Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  13. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017) Li et al. [2022] Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  14. Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078 (2022) Zhang et al. [1998] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  15. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:: The state of the art. International journal of forecasting 14(1), 35–62 (1998) Anmala et al. [2015] Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  16. Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, kentucky, usa. Journal of Environmental Engineering 141(5), 04014082 (2015) Li et al. [2019] Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  17. Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, china. Environmental Science and Pollution Research 26, 19879–19896 (2019) Singh et al. [2009] Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  18. Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895 (2009) García-Alba et al. [2019] García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  19. García-Alba, J., Bárcena, J.F., Ugarteburu, C., García, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295 (2019) Peng et al. [2019] Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  20. Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231 (2019) Zhao et al. [2019] Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  21. Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28 (2019) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  22. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Hoerl and Kennard [1970] Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  23. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970) Chen and Guestrin [2016] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  24. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Breiman [2001] Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  25. Breiman, L.: Random forests. Machine learning 45, 5–32 (2001) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
  26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

Summary

  • The paper shows that LightGBM achieved the best performance with an RMSE of 10.84 in predicting water quality.
  • It compares various machine learning models using hyperparameter tuning and five-fold cross-validation on comprehensive water quality data.
  • SHAP analysis revealed that dissolved oxygen is a key predictor, questioning the necessity of explicit spatial-temporal features.

Machine Learning Techniques in Water Quality Forecasting: A Comprehensive Analysis

This paper presents a comparative paper of various ML models for predicting water quality in Georgia, USA, with a specific focus on the pH values of water bodies. The paper evaluates linear regression, Random Forest, XGBoost, LightGBM, and multilayer perceptron (MLP) neural networks against traditional spatial-temporal models like SADL-II. A surprising outcome is the superior performance of ML models that do not explicitly incorporate spatial-temporal dependencies over those specifically designed to model these factors.

Methodology

The research employs an extensive dataset of daily water quality samples from 37 sites across Georgia over two years. This dataset encompasses eleven input features, including dissolved oxygen and temperature, and features are engineered to capture additional temporal and spatial information. The paper leverages advanced model selection techniques, using hyperparameter tuning with five-fold cross-validation to ensure robust model performance. Various evaluation metrics are used, including RMSE, MAPE, and others, to quantify prediction errors.

Key Findings and Numerical Results

Among the machine learning models, LightGBM emerges as the top performer with the best RMSE (10.84) and other error metrics like MAPE and WMAPE across different feature sets. These results point to the strength of tree-based models in capturing complex, non-linear relationships in water quality data. Interestingly, the inclusion of spatial-temporal features in the ML models did not significantly enhance prediction accuracy, challenging the conventional wisdom about the necessity of these features in environmental forecasts.

Another significant finding is the high sensitivity of MLP neural networks to feature scaling, leading to inferior performance compared to other models. This sensitivity underscores the importance of preprocessing steps in neural network training. Furthermore, the paper employs SHAP to interpret feature importance within the models, providing insights into the predictive power of different variables, with dissolved oxygen emerging as a particularly vital feature.

Implications and Future Directions

The paper's findings have significant implications for environmental monitoring and management. The demonstrated superiority of ML models highlights a potential shift towards data-driven approaches, providing a more accessible and interpretable pipeline for both domain experts and non-experts. The notion that complex, high-performing models can be built without explicit spatial-temporal considerations expands the toolkit available for environmental data analysis.

Theoretically, this research invites further examination of nonlinear and non-stationary dependencies that might better capture the intricacies of natural systems beyond spatial-temporal features. Practically, it suggests that water quality monitoring systems could be enhanced with ML models without substantial computational overhead or domain-specific modeling.

Looking ahead, this paper opens several avenues for exploration. Comparing these results across different environmental variables, geographical areas, and varying datasets would elucidate the broader applicability of the proposed approaches. The paper also emphasizes the need for continued refinement of interpretability and transparency in machine learning models, ensuring that their predictions can be robustly understood and trusted by domain practitioners.

In summary, the research establishes a novel perspective in water quality prediction by emphasizing the efficacy of advanced machine learning techniques. It challenges prevailing assumptions about the necessity of explicit spatial-temporal modeling, thus contributing valuable insights into future methodological developments in environmental data science.